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In these notes we will give an account of the algorithm of Barak,
Kothari, and Steurer for the best separable state problem. Although
this problem has close connections to quantum information and
computation, we will discuss and solve an entirely classical version of
it.
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Degree-4 Polynomial Optimization Let P be a degree-4 polynomial in
n variables x1, . . . , xn. Abusing notation, we also let P ∈ Rn2×n2

be
any matrix such that P(x) = (x ⊗ x)>P(x ⊗ x). Our goal is to solve
the problem maxx∈Sn−1 P(x). Of course this problem is NP-hard; we
would like to solve it up to some kind of error.

1 How to measure error?

The first kind of guarantee we might hope for is multiplicative error
– that is, can we find x such that P(x) ≥ α ·OPT for some α > 0? This
kind of multiplicative guarantee would violate ETH for any constant.

On the other end of the spectrum, we could measure error via the
Frobenius norm of P. That is, we could look for x such that P(x) ≥
OPT − ε · ‖P‖F, where ε > 0 is small. It turns out that this problem
is very closely related to dense 4-CSPs, and can be solved in time
n(1/ε)O(1)

.
We get a more difficult problem if we measure error in the operator

norm of the matrix P – that is, we look for x such that P(x) ≥ OPT −
ε · ‖P‖op. This is more difficult because ‖P‖op ≤ ‖P‖F.

Problem 1.1. Is there a better than brute-force algorithm (ie, with running
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time 2o(n)) when ε is an arbitrarily small constant which can find x such
that P(x) ≥ OPT − ε · ‖P‖op?

It is known that a running time of no(log n) for this problem is un-
likely – it would violate standard complexity hypotheses. But an
algorithm with running time nO(log n) (for a slight quantum general-
ization of this problem) would have major consequences for quantum
computing – in particular would imply a containment of complexity
classes QMA ⊆ EXP.

2 The perfect completeness case

Barak, Kothari, and Steurer in 2017 gave the first nontrivial algorithm
for this degree-4 polynomial optimization problem in any regime.
Their algorithm works when OPT = ‖P‖op. Or, put a different way,
their algorithm can distinguish between the possibilities: OPT =

‖P‖op and OPT ≤ (1− ε)‖P‖op, for any constant ε > 0. For every

constant ε > 0, the algorithm runs in time 2
√

n·(log n)O(1)
, beating brute

force by replacing n with
√

n in the exponent. The algorithm is based
on rounding

√
n · (log n)O(1) degree SoS.

Goal: Our goal for the rest of these notes is as follows. Given P,
we want to distinguish between two cases – OPT = ‖P‖op (“YES”)
and OPT ≤ (1− ε)‖P‖op (“NO”). We think of ε as a tiny constant and
hide dependences on ε in O(·) notation.

If OPT = ‖P‖op, then the top eigenspace of P contains a vector of
the form x⊗ x. So it will be enough to solve the following problem.

Goal, reformulated: Given the projector Π to a subspace of Rn2
,

distinguish the following two cases: YES, where there exists y such
that Π(y ⊗ y) = y ⊗ y, and NO, where every y has ‖Π(y ⊗ y)‖ ≤
(1− ε)‖y⊗ y‖.

Our plan to solve this problem is search for a pseudoexpectation Ẽ

of degree d =
√

n(log n)O(1) which satisfies the constraints ‖x‖2 = 1
and Π(x ⊗ x) = x ⊗ x. If such a pseudoexpectation exists, we will
output “YES”, and otherwise we will output “NO”.

To prove that this algorithm works, we need to show that if such Ẽ

exists, then there exists y such that ‖Π(y⊗)‖ ≥ (1− ε)‖y⊗ y‖. Then
Π cannot be in the NO case, so it must be in the YES case.

For this task it suffices to take such Ẽ and round it to find such y.
Note that because are only aiming to solve the YES vs NO decision
problem rather than the search problem of actually finding y, our
rounding only needs to be “existential” – that is, we don’t need to
give an efficient algorithm which takes Ẽ and extracts such y. This
will simply things for us, although one can also perform the search
task also in time 2

√
n·(log n)O(1)

.
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3 Sufficient to make Ẽxx> approximately rank-one

We first formulate a sufficient condition on Ẽ which would make it
easy to round. This condition is called “approximately rank one”.
Our goal afterwards will be to find a procedure which can make Ẽ

approximately rank one.

Lemma 3.1 (Approximately rank one suffices). Suppose that Ẽxx> has
the property that λmax(Ẽxx>) ≥ (1− ε)‖Ẽxx>‖F. (And suppose that Ẽ

satisfies ‖x‖2 = 1 and Π(x⊗ x) = x⊗ x).) Then the maximum eigenvector
y of Ẽxx> satisfies ‖Π(y⊗ y)‖ ≥ 1−O(

√
ε).

Proof. Under the hypotheses of the lemma, if y is the (unit norm) top
eigenvector of Ẽxx>, with eigenvalue λ, then ‖λyy> − Ẽxx>‖F ≤
O(
√

ε · λ). To see this, we expand

‖λyy> − Ẽxx>‖2
F = λ2 − 2λ〈yy>, Ẽxx>〉+ ‖Ẽxx>‖2

F

= λ2 − 2λ2 + ‖Ẽxx>‖2
F

= ‖Ẽxx>‖2
F − λ2

≤ (1 + O(ε))λ2 − λ2

≤ O(ε)λ2 .

So consider

‖Π(y⊗ y)‖ = ‖Π( 1
λ Ẽx⊗ x− E)‖

where ‖E‖ is a vector with Euclidean norm O(
√

ε). This is at least
‖Π( 1

λ Ẽx⊗ x)‖ −O(
√

ε). Now, since Ẽ satisfies Π(x⊗ x) = x⊗ x, we
have ‖ΠẼ(x⊗ x)‖ = ‖Ẽx⊗ x‖. And λ ≤ ‖Ẽx⊗ x‖F, which completes
the proof.

4 Example: the Uniform Distribution

Before we describe a procedure which can take a pseudoexpectation
and produce a new one which satisfies the hypothesis of Lemma 3.1,
we describe some intuition. As a thought experiment, imagine that Ẽ

is the uniform distribution on the unit sphere in n dimensions. The
second moments are Ex∼Sn−1 xx> = 1

n Id.
If we wanted to condition on an event such that the conditional

distribution satisfies Lemma 3.1, we could try and condition on x
being in a spherical cap around some vector g. This should create
a large eigenvalue in the g direction in the second moment matrix.
Without loss of generality, let us take g = e1, the first coordinate
direction.

Then we are interested in the second moments E[xx> | |x1| ≥ t].
How large do we have to make t in order to satisfy Lemma 3.1? By
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rotational symmetry, the conditional second moments are

E[xx> | |x1| ≥ t] = diag(t2, 1−t2

n−1 , . . . , 1−t2

n−1 ) .

The top eigenvalue is t2, and the Frobenius norm is roughly
√

t4 + 1/n.
So, the second moments satisfy Lemma 3.1 if we take t� n−1/4.

Now let us estimate, roughly, the probability of the event we are
conditioning on here. Since x1 is roughly Gaussian N (0, 1/n), we
have Pr(|x1| > n−1/4) ≈ exp(−

√
n).

The next crucial piece of intuition is that it should be possible to
“approximately” condition a degree ≈

√
n pseudoexpectation on an event

of probability exp(−
√

n). There is nothing special about
√

n here – a
good intuition is that degree ≈ k is sufficient to “mimic” conditioning
on an event of probability ≈ 2−k.

5 Reweighing

How do we condition a pseudoexpectation on an event like “x1 ≥ t”?
Unlike in the Boolean setting, where we were able to develop a direct
analogue for pseudoexpectations of conditioning on events like x1 =

1 or x1 = −1, here we will not get an exact analogue of conditioning.
Instead, we will approximate conditioning by “reweighing”.

5.1 Reweighing a probability distribution

Suppose that µ is a probability distribution on a domain Ω, and w is
any nonnegative function. Then there is a “reweighed” distribution
µ′ given by µ′(x) ∝ µ(x)w(x). This distribution will put more weight
on x where w is relatively large.

If we have a function f , we can write its expectation under the
reweighed distribution as Eµ′ f (x) = Eµ w(x) f (x)/ Eµ w(x). If w is
the indicator for some event, then this is equivalent to conditioning
on that event.

5.2 Reweighing a pseudoexpectation

We can reweigh a pseudoexpectation using the same formula. The
only modification is that the reweighing function must be a sum of
squares. If w is a degree-r SoS and Ẽ is a degree-d pseudoexpectation
in variables x, then we can define a new linear operator Ẽ

′
by

Ẽ
′
p(x) =

Ẽw(x)p(x)
Ẽw(x)

.

It is easy to check that Ẽ
′

is a degree d − r pseudoexpectation. Fur-
thermore, if Ẽ � q(x) ≥ 0, then also Ẽ

′
� q(x) ≥ 0.
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5.3 Reweighing the uniform distribution on Sn−1

Continuing our example from before, let us show that there is a de-
gree O(

√
n)-degree reweighing of the uniform distribution on Sn−1

which has the approximate rank-one property.
Let µ be uniform on Sn−1. Let g ∼ N (0, I). Consider the reweigh

given by 〈x, g〉k. We claim that with positive probability over g,

Ex〈x, g〉k+2

Ex〈x, g〉k‖g‖2 ≥
k + 2

n

and hence taking k ≈
√

n is good enough for us. It will be enough to
show that

Eg[Ex〈x, g〉k+2] ≥ k + 2
n

Ex,g〈x, g〉k‖g‖2 .

Both left and right hand sides are simple calculations. The left hand
side is simply (k + 2)!!, the k + 2-nd moment of a standard Gaussian.
The right hand side is given by

Eg〈x, g〉k(〈x, g〉2 + ‖g′‖2)

where g′ is an n− 1-dimensional standard Gaussian independent of
〈x, g〉. This is in turn equal to (k + 2)!! + (n− 1) · k!!. So the ratio is
approximately (k + 2)/(n− 1), as we wanted.

This gives a lower bound on the top eigenvalue. Of course, the
Frobenius norm might also have changed. When we do the analysis
for real (on pseudoexpectations) we will need to address this issue.

6 Making a pseudoexpectation approximately rank-one via reweigh-
ing

Now to the heart of things: we show that there is a degree O(
√

n log n)
reweighing which makes a pseudoexpectation approximately rank
one.

6.1 Stabilizing the Frobenius Norm

We can assume that no degree-k reweighing can increase the Frobe-
nius norm ‖Ẽxx>‖F by more than a multiplicative factor of (1 + ε).
Because, if such a reweighing did exist, we could apply it to increase
the Frobenius norm by this factor (1 + ε). Since 1/

√
n ≤ ‖Ẽxx>‖F ≤

1, this can happen only O(log n) times.

6.2 Reweighing by random vector

Our plan is to reweigh using the function 〈x, g〉a where a ≤ k is an
(even) integer and g ∼ N (0, Ẽxx>).
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Lemma 6.1. Let ε > 0. Suppose Ẽ is a pseudoexpectation of degree k + 2 =

O(
√

n) satisfying ‖x‖2 = 1. And suppose that every degree ≤ k reweighing
Ẽ
′

of Ẽ has ‖Ẽ′xx>‖F ≤ (1 + ε)‖Ẽxx>‖F. Then then there exists a degree
≤ k reweighing Ẽ

′
of Ẽ such that

λmax(Ẽ
′
) ≥ (1− ε)‖Ẽ′xx>‖F .

Proof. It will be enough to show that there exists a ≤ k such that with
positive probability over g ∼ N (0, Ẽxx>), if we reweigh Ẽ using
〈x, g〉a to obtain Ẽ

′
, we get

λmax(Ẽ
′
xx>) ≥ (1− ε)‖Ẽxx>‖F .

A lower bound on λmax(Ẽ
′
xx>) is given by

λmax(Ẽ
′
xx>) ≥ Ẽ

′〈x, g〉2
‖g‖2 =

Ẽ〈x, g〉a+2

Ẽ〈x, g〉a · ‖g‖2
.

By taking the product of these lower bounds from a = 0 to a = k− 2
and telescoping the product, it’s enough to show that with positive
probability,

Ẽ〈x, g〉k
‖g‖k ≥ (1− ε)k/2 · ‖Ẽxx>‖k/2

F

since then by taking k/2-th roots on both sides we would find that
some a satisfies the desired lower bound. Since we only need positive
probability, it’s enough to show

Eg Ẽ〈x, g〉k ≥ (1− ε)k/2 · ‖Ẽxx>‖k/2
F ·Eg ‖g‖k .

The left-hand side satisfies

Ẽ
[
Eg〈x, g〉k

]
= Mk · Ẽ

[
(Eg〈x, g〉2)k/2

]
≥ Mk · (Ẽ Eg〈x, g〉2)k/2

= Mk · ‖Ẽxx>‖k
F

where Mk = (k− 1)!! is the k-th Gaussian moment.
What about the right-hand side?1 Lemma 6.2, which follows this 1 Note that E ‖g‖2 = Ẽ‖x‖2 = 1. If

‖g‖2 “acts like” its expectation, we
would have E ‖g‖k ≈ 1 as well (of
course when k gets large this won’t be
true). In this case, we would just need
Mk · ‖Ẽxx>‖k/2

F ≥ (1− ε)k/2, for which
it suffices to choose k = C

√
n for a large

enough constant C.

proof, shows that

E ‖g‖k ≤ ∑
p≤k/2

(
k/2

p

)
(2p− 1)!! · ‖Ẽxx>‖p

F .

We claim that there exists C(ε) so that if k ≥ C(ε)/‖Ẽxx>‖F then

∑
p≤k/2

(
k/2

p

)
(2p− 1)!! · ‖Ẽxx>‖p

F ≤ (1 + ε)k/2(k− 1)!! · ‖Ẽxx>‖k/2
F ,
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which will complete the proof. There are only k terms in the sum, so
it will be enough to show that for every p,(

k/2
p

)
(2p− 1)!! ≤ (1 + ε)k/2−o(k)(k− 1)!! · ‖Ẽxx>‖k/2−p

F . (6.1)

For some δ = δ(ε) to be chosen later, we split into two cases.
Large p case: First, consider a term where p ≥ (1− δ) k

2 . In this
case, (k− 1)!!/(2p− 1)!! ≥ (k/2)k/2−p. So,

(k/2
p )(2p− 1)!!

(k− 1)!!‖Ẽxx>‖k/2−p
F

≤
(

k/2
p

)
· 1

(k/2)k/2−p‖Ẽxx>‖k/2−p
F

If k/2 ≥ ‖Ẽxx>‖−1
F , then the last term is at most 1, so the whole

thing is at most (
k/2

p

)
≤ 2kH(δ) .

Here H(δ) is the binary entropy function. This is at most (1 + ε)k−o(k)

as long as we choose δ such that H(δ) ≤ δ log 1
δ ≤ ε/100, proving

(6.1) for the large-p case.
Small p case: Now we need to handle the case p ≤ (1− δ)k/2,

where δ is chosen as above. Suppose p = (1 − γ)k/2 for γ ≥ δ.
Then we can use the bounds (k/2

p ) ≤ 2(k/2)H(γ) and (2p − 1)!! ≤
2o(k) · 2(1−γ)k/2(k/(2e))(1−γ)k/2 to obtain(

k/2
p

)
(2p− 1)!! ≤ 2(k/2)(H(γ)+o(1)) · (k/e)(1−γ)k/2 .

At the same time (k− 1)!! ≥ 2−o(k)2k/2(k/2e)k/2 = 2−o(k)(k/e)k/2. So

(k/2
p )(2p− 1)!!

(k− 1)!!
≤ 2o(k) · 2(k/2)H(γ) · (k/e)−γk/2 .

We just need the RHS of the above to be less than (1+ ε)k/2−o(k)‖Ẽxx>‖γk/2
F .

For this it is enough to choose k ≥ Cγ−1‖Ẽxx>‖−1
F for a big-enough

constant C. Since γ ≤ δ = δ(ε), this completes the analysis.

Lemma 6.2. Let g ∼ N (0, Σ). For every even n ∈N,

E ‖g‖2n ≤ ∑
p≤k

(
n
p

)
(2p− 1)!! · (Tr Σ)n−p · ‖Σ‖p

F .

Proof. Generally, one can write down moments of a random vari-
able in terms of its cumulant. Cumulants κn are the coefficients of
cumulant-generating function K(t) given by

K(t) , log E etX =
∞

∑
n=1

κn
tn

n!
.
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It is well known (see wikipedia) that the formula for n-th moment
given cumulants is given by

E Xn = ∑
π∈Π

∏
B∈π

κ|B|

Here Π is the set of all set partitions of [n] and B ∈ π are parts.

Suppose g ∼ N (0, Σd) where Σ has eigenvalues λ1, . . . , λd. We can
compute the cumulants as follows:

κn(‖g‖2) = κn(
n

∑
j=1

λjz2
j ) =

n

∑
j=1

λn
j κn(z2

j ) =
n

∑
j=1

λn
j 2n−1(n− 1)! = 2n−1(n− 1)! Tr(Σn),

here z1, . . . , zd ∼ N (0, 1) are iid normals. We can now use this to see
that

E(‖g‖2n) = ∑
π∈Π

∏
B∈π

2|B|−1(|B| − 1)! Tr(Σ|B|)

Let us make a little digression. Note that if we apply this formula
for g ∼ N (0, 1) we get that

(2n− 1)!! = E(g2n) = ∑
π∈Π

∏
B∈π

2|B|−1(|B| − 1)!

Using this fact, we can upper bound2 2 The upper bound is not very lossy
as the sum is lower bounded by
(n

p)2
n−p−1(n− p− 1)!.

∑
π∈Π

p singletons

∏
B∈π

2|B|−1(|B| − 1)! ≤
(

n
p

)
(2(n− p)− 1)!!

Right hand side counts number of ways to choose p singletons and
then partition the rest.

To finish, whenever k ≥ 2 we bound Tr(Σk) ≤ Tr(Σ2)k/2 = ‖Σ‖k
F.

E(‖g‖2n) = ∑
π∈Π

∏
B∈π

2|B|−1(|B| − 1)! Tr(Σ|B|)

=
n

∑
p=0

∑
π∈Π

p singletons

∏
B∈π

2|B|−1(|B| − 1)! Tr(Σ|B|)

≤
n

∑
p=0

Tr(Σ)p‖Σ‖n−p
F ∑

π∈Π
p singletons

∏
B∈π

2|B|−1(|B| − 1)!

≤
n

∑
p=0

(
n
p

)
(2(n− p)− 1)!! Tr(Σ)p‖Σ‖n−p

F

=
n

∑
p=0

(
n
p

)
(2p− 1)!!‖Σ‖p

F Tr(Σ)n−p.

https://en.wikipedia.org/wiki/Cumulant
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