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1 Constraint Satisfaction Problems
In this lecture, we will discuss another approach for rounding pseudoexpectations. In contrast to the Gaussian
rounding strategy used in the Goemans-Williamson algorithm for max-cut, this time we will make use of higher-
order moments of Ẽ. The setting we will consider will be that of 2-constraint satisfaction problems (2-CSPs), a
generalization of max-cut.

Problem 1 (Constraint satisfaction problem). An instance of a 2-CSP is given by a collection of functions φ =
(φij)i,j∈[n] where each φij : [q]×[q]→ {0, 1}. The goal will be to maximize, over x ∈ [q]n, the value of

∑
i,j φij(xi, xj).

We further denote the maximum by OPT.

It is not difficult to see that the above is a strict generalization of max-cut.

Example 2 (Max-cut as a CSP). Let G be a graph, and consider the 2-CSP with alphabet size q = 2, given by

φij(xi, xj) =

{
0, xi = xj ,

1, xi 6= xj

for ij ∈ E, and φij ≡ 0 for ij 6∈ E. Then, for x ∈ {0, 1}n,
∑
i,j φij(xi, xj) is precisely the cut value associated

to the cut
(
{i : xi = 0}, {i : xi = 1}

)
.

More generally, for the alphabet being [q] for q ≥ 2, the above CSP attempts to find a q-coloring that violates
the fewest edges, that is, minimizes the size of {ij ∈ E : xi = xj}.

The main result that we will discuss in this section, due to Barak-Raghavendra-Steurer [BRS11], is the following.

Theorem 3. Let φ be a 2-CSP on alphabet [q]. Then, for any ε > 0, there exists an algorithm that outputs x such that∑
i,j

φij(xi, xj) ≥ OPT− εn2

that runs in time (nq)
O
(

log q

ε2

)
.

In fact, the running time in the above algorithm can be improved to qO
(

log q

ε2

)
·nO(1), which is polynomial in n. While

we will not discuss the details thereof, this improvement involves designing a problem-specific semidefinite program
solver, instead of blackbox using the ellipsoid algorithm that we saw in previous lectures. We refer the interested
reader to [GS12] (also see [OGT13]).
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The above algorithm provides a “polynomial time approximation scheme” (PTAS) for dense CSPs, where the opti-
mum OPT is Ω(n2). This is the case, for example, in max-cut on dense graphs with Ω(n2) edges. While this was not
the first approximation for max-cut on dense graphs, we will later see that the ideas here will generalize to certain
non-dense graphs as well, such as expanders.

Given our discussion of max-cut and the sum-of-squares hierarchy, we now have a blueprint for designing optmiza-
tion algorithms using sum-of-squares. We begin by encoding our constraints (here some proxy for xi ∈ [q]) as
low-degree polynomials, then search for pseudoexpectations that satisfy these constraints and maximize the objec-
tive polynomial.
How can we encode xi ∈ [q] for all i ∈ [n]? We shall consider a “one-hot” encoding of this constraint, by introducing
variables yia for i ∈ [n] and a ∈ [q], indicating whether xi = a, and enforce that the yia are in {0, 1}, and that exactly
one of the (yia)a∈[q] is equal to 1 (for any fixed i ∈ [n]). More concretely, consider the system of polynomials

P[q]n :=

{
y2
ia = yia for all i ∈ [n], a ∈ [q],∑

a∈[q] yia = 1 for all i ∈ [n]

}
.

Furthermore, for (yi), (yj) satisfying the above constraints, we abuse notation to denote by φij the same function
given by

φij(yi, yj) =
∑
a,b∈[q]

φij(a, b)yiayjb.

Note that this is a degree 2 polynomial in the (yia).

As usual, we try to maximize c such that there exists a pseudoexpectation Ẽ such that

Ẽ � P[q]n ∪

 ∑
i,j∈[n]

φij(yi, yj) ≥ c

 .

Obviously, the maximum such c is at least OPT.
An alternative similar expression would involve searching for a pseudoexpectation satisfying P[q]n that maximizes
Ẽ
∑
i,j∈[n] φij(yi, yj). However, this will cause issues later in the argument – in some sense, this maximizes the

(pseudo)expected CSP value, while the expression we will use searches over (pseudo)distributions that are only
supported on (yia) with large CSP value.
The rest of the game boils down to intelligently rounding the pseudoexpectation to a real distribution, and showing
that this rounding does not lose too much in the objective value. In the Goemans-Williamson algorithm, we saw
Gaussian rounding. In this lecture, we will see global correlation rounding.

2 Local Distributions and Independent Rounding
First, we will lay some groundwork, and in the process see another respect in which pseudoexpectations act like the
moments of actual distributions on {0, 1}n.

Lemma 4 (Local Distributions). Let Ẽ be a pseudoexpectation of degree d. For every |S| ⊆ [n] with |S| ≤ d/2, there
is a real distribution µS over [q]S such that for every aS = (ai)i∈S in [q]S ,

Pr
xS |µS

[xi = ai for all i ∈ S] = Ẽ
∏
i∈S

yiai .

In other words, any pseudodistribution is “locally” a real distribution. We shall typically denote these “local distri-
butions” by (µS).
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Proof. We have for any aS = (ai)i∈S that

Ẽ
∏
i∈S

yiai = Ẽ
∏
i∈S

y2
iai ≥ 0.

Furthermore, ∑
aS∈[q]S

Ẽ
∏
i∈S

yiai = Ẽ
∑

aS∈[q]S

∏
i∈S

yiai = Ẽ
∏
i∈S

∑
a∈[q]

yia

 = 1,

where the final inequality follows because Ẽ �
∑
a∈[q] yia = 1 for all i ∈ [n]. This implies that the distribution µS

defined as in the lemma statement is an actual distribution, as desired. �

Remark. This does not imply that there exists a single distribution µ over [q]n that is consistent with Ẽ. Indeed, were
this the case, every pseudodistribution would be a real distribution. While there exist well-defined local distributions
for every small setS, there is no guarantee that these local distributions can be “stitched together” to form a consistent
local distribution.
As an exercise, show that these local distributions are consistent among themselves, in that for T ⊆ S ⊆ [n] with
|S| ≤ d/2, the marginal of µS on T is equal to µT .
The above lemma suggests a simple rounding scheme: for each i ∈ [n], independently draw yi ∼ µ{i}. This is not as
silly as it may seem; in fact, many ”randomized rounding” schemes for linear programs have this flavor and result
in non-trivial algorithms.
Of course, the issue with this rounding scheme is that it loses all information about the higher-order correlations
in Ẽ – the joint distributions (yi, yj) will have independent coordinates, while the joint (2-local) distributions µ{i,j}
coming from Ẽ need not be. Expressing the same concept in terms of pseudoexpectation values rather than local
distributions, we expect

Pr
xi∼µ{i}
xj∼µ{j}

[xi = a, xj = b] = Pr
xi∼µ{i}

[xi = a] · Pr
xj∼µ{j}

[xj = b] = ẼyiaẼyjb

and Ẽyiayjb to be different.
Nevertheless, let us imagine for a moment that all such issues are absent, and proceed with an analysis. We have

Ẽ
∑
i,j

φ(xi, xj) =
∑
i,j

Ẽφ(xi, xj)

=
∑
i,j

E(xi,xj)∼µ{i,j}φ(xi, xj)

=
∑
i,j

Exi∼µ{i}
xj∼µ{j}

φ(xi, xj)−
∑
i,j

(
Exi∼µ{i}
xj∼µ{j}

φ(xi, xj)− E(xi,xj)∼µ{i,j}φ(xi, xj)

)
≥ OPT−

∑
i,j

dTV

(
µ{i} ⊗ µ{j}, µ{i,j}

)
.

Here, the final inequality follows from the property of the total variation distance that for distributions π, ν over Ω,

dTV (π, ν) = sup
f :Ω→[0,1]
measurable

Eπ[f ]− Eν [f ],

and φij takes values in [0, 1] ({0, 1}, in fact).
As expected, the distribution not having the higher-order correlations of Ẽ is causing issues. Indeed, the second
term we are subtracting could be very large, potentially Ω(n2).1
However, this presents us with a concrete goal! Can we somehow manipulate the pseudodistribution Ẽ in a way
that reduces the average correlation between pairs of coordinates, but preserves the objective value?

1Considering the distribution π over {0, 1}2 that takes (0, 1) with probability 1/2 and (1, 0) with probability 1/2, the total variation distance
between π and π{1} ⊗ π{2} is 1/2.
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3 Conditioning
Now, we shall introduce another way in which pseudodistributions behave like real distributions – we can condition
on events, provided that the events can be expressed by low-degree polynomials.

Lemma 5. Let Ẽ be a degree d pseudodistribution over variables, such that Ẽyia > 0. Then, the pseudodistribution
Ẽ[· | yia = 1] defined by

Ẽ
[
p(y) | yia = 1

]
=

Ẽp(y)yia

Ẽyia
is indeed a pseudodistribution of degree d − 2. Furthermore, this conditioned pseudodistribution satisfies any
constraints that Ẽ did.

We leave the proof of the above as an exercise to the reader.
The idea for the final rounding algorithm is as follows. Starting with some pseudoexpectation, we repeatedly pick
a random coordinate in [n], and pin the value of xi according to the correct conditional (local) distribution (more
concretely, we pick a ∼ µ{i}, and condition on yia = 1). We will show that after some poly(log q, 1/ε) steps, this
algorithm outputs a pseudodistribution Ẽ′ (with local distributions (µ′S)) with small pairwise correlations, in that∑

i,j∈[n]

dTV

(
µ′{i,j}, µ

′
{i} ⊗ µ

′
{j}

)
≤ εn2. (1)

Why should this happen? Suppose instead that we are at a pseudodistribution that does not satisfy the above low-
correlation guarantee. Then, for a randomly chosen coordinate i, we have

∑
j∈[n] dTV

(
µ′{i,j}, µ

′
{i} ⊗ µ

′
{j}

)
> εn – the

ith coordinate is non-trivially correlated with a lot of other coordinates j. Intuitively, this means that if you learn the
value of the ith coordinate in a sample from µ, you would also learn a lot about the values of the other coordinates,
thus driving down correlations.
To conclude the proof of Theorem 3, we shall prove the following lemma, known as the pinning lemma in statistical
physics literature (where it was first introduced) and the global correlation lemma in sum-of-squares literature.

Lemma 6 (Global correlation lemma). Let Ẽ be an arbitrary pseudodistribution of degree at least 2T + 4, for T :=

O
(

log q
ε2

)
. Let Ẽ′ be the (random) pseudodistribution obtained as follows. Starting with Ẽ0 = Ẽ, for 0 ≤ t ≤ T , do

the following. If Ẽt satisfies (1) or t = T , output Ẽ′ = Ẽt. Otherwise, denoting by
(
µ

(t)
{i}

)
i∈[n]

the local distributions

of Ẽt, pick a uniformly random i ∼ [n], ai ∼ µ{i}, and set Ẽt+1[·] = Ẽt[· | yiai = 1]. Letting (µ′)S⊆[n]
|S|≤2

be the local

distributions of Ẽ′, it holds that

Echoices of pinning
∑
i,j

dTV

(
µ′{i,j}, µ

′
{i} ⊗ µ

′
{j}

)
≤ O(εn2).

4 Proof of the global correlation lemma
Before we start with the proof, we quickly cover the basics of information theory for the unfamiliar reader.
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A Crash Course on Information Theory

LetZ,W be discrete random variables taking values in [q], with probability density function pZ,W : [q]× [q]→
R≥0. Also let pZ and pW the density function of the marginal on Z and W . Then, the entropy of Z is defined
by

H(Z) :=
∑
a∈[q]

−pZ(a) log pZ(a),

where we use the convention 0 log 0 = 0, and all logs are in base e.The entropy of a random variable is
a measure of “how random” it is, and is non-negative. Indeed, reinforcing this intuition that the entropy
corresponds to randomness, it is maximized by the uniform distribution on [q], which has an entropy of log q.
Given an event E , we denote H(Z | E) = H({Z | E}), where {Z | E} is the random variable obtaining by
conditioning Z on E . More generally, the conditional entropy is given by

H(Z |W ) = Ew∼WH
(
Z |W = w

)
.

This is a measure of how much randomness is “left in Z” after we condition on the value of W .
We also define the mutual information

I(Z;W ) = H(Z)−H(Z |W ),

which is a measure of how much knowing the value of W influences one’s knowledge of the value of Z. The
mutual information is non-negative and symmetric. Like the entropy, it is in [0, log q].
Finally, a consequence of Pinsker’s inequality is that

dTV

(
PZ,W , PZ ⊗ PW

)
≤
√

1

2
I(Z;W ). (2)

Let us prove Lemma 6. For 0 ≤ t ≤ T , let Ẽt be the random pseudodistribution obtained after t rounds of pinning.
We now introduce some notation, some of which we will abuse. Let X(t)

i denote the local distribution of Ẽt on xi;
we shall also use (X

(t)
i , X

(t)
j ) to mean the local distribution on (xi, xj) according to Ẽt. This abuse is not inconsistent

(in that it is okay to use the same letter X(t)
i in both places) due to the exercise in the remark after Lemma 4. In

particular, since these are legitimately random variables, we may talk about the entropy of H(X
(t)
i ) and the mutual

information I(X
(t)
i ;X

(t)
j ).

Consider the potential function
ψ(t) := Echoices of pinnings

up to time t

[
Ei∼[n]H(X

(t)
i )
]
.

We will show that this potential function is decaying, and if something looking like the average pairwise correlations
is large, it decays fast. Towards this, define the global information

GI(t) = Echoices of pinnings
up to time t

Ei,j∼[n]I(X
(t)
i ;X

(t)
j ).

We will show that
ψ(t) − ψ(t+1) = GI(t) .

Indeed,

GI(t) = Echoices of pinnings
up to time t

Ei,j∼[n]H(X
(t)
i )−H(X

(t)
i | X

(t)
j )

= Echoices of pinnings
up to time t

Ei∼[n]H(X
(t)
i )− Echoices of pinnings

up to time t
E j∼[n]

aj∼µ(t)

{j}

Ei∼[n]H(X
(t)
i | X

(t)
j = aj).

The first quantity is equal to ψ(t) by definition. Furthermore, note that the second expectation in the second quantity
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exactly describes the pinning in the (t+ 1)th step! Therefore,

GI(t) = Echoices of pinnings
up to time t

Ei∼[n]H(X
(t)
i )− Echoices of pinnings

up to time t+ 1

Ei∼[n]H(X
(t+1)
i ) = ψ(t) − ψ(t+1).

Now, due to the non-negativity of entropy, ψ(T ) ≥ 0, and due to the boundedness of entropy, ψ(0) ≤ log q. It follows
that ∑

0≤t≤T

GI(t) ≤ log q.

Therefore,
log q

T
≥ Echoices of pinnings

1

T

∑
0≤t≤T

Ei,j∼[n]I(X
(t)
i ;X

(t)
j )

≥ Echoices of pinnings min
0≤t≤T

Ei,j∼[n]I(X
(t)
i ;X

(t)
j )

(2)
≥ 2 · Echoices of pinnings min

0≤t≤T
Ei,j∼[n]dTV

(
µ

(t)
{i,j}, µ

(t)
{i} ⊗ µ

(t)
{j}

)2

.

≥ 2 ·
(
Echoices of pinnings min

0≤t≤T
Ei,j∼[n]dTV

(
µ

(t)
{i,j}, µ

(t)
{i} ⊗ µ

(t)
{j}

))2

,

where the final inequality is Jensen’s inequality applied twice. Recalling that T = Ω
(

log q
ε2

)
,

Echoices of pinning min
0≤t≤T

Ei,j∼[n]dTV

(
µ

(t)
{i,j}, µ

(t)
{i} ⊗ µ

(t)
{j}

)
≤ O(ε),

so for the output distribution Ẽ′ with local distributions (µ′S),

Echoices of pinningEi,j∼[n]dTV

(
µ′{i,j}, µ

′
{i} ⊗ µ

′
{j}

)
≤ Echoices of pinning max

{
ε, min

0≤t≤T
Ei,j∼[n]dTV

(
µ

(t)
{i,j}, µ

(t)
{i} ⊗ µ

(t)
{j}

)}
≤ ε+ Echoices of pinning min

0≤t≤T
Ei,j∼[n]dTV

(
µ

(t)
{i,j}, µ

(t)
{i} ⊗ µ

(t)
{j}

)
≤ O(ε).

This completes the proof of Lemma 6, and thus Theorem 3. �
An interesting aspect to the above analysis is that it does not show that GI(t) is monotone. This is the reason for the
strange form of Lemma 6 – aesthetically, a nicer algorithm would involve just outputting ẼT .

5 Beyond dense 2-CSPs
The above algorithmic idea, while explained in the context of dense 2-CSPs, goes far beyond. For starters, a similar
analysis works for dense k-CSPs, which involves functions φi1,...,ik : [q]k → {0, 1}. Here, there exists an algorithm
that outputs an assignment x with ∑

φi1,...,ik(x1, . . . , xk) ≥ OPT− εnk

that runs in time npoly(log q,1/ε,k).

In fact, the ideas here also work for some important classes of non-dense 2-CSPs. An important family of such CSPs
is given by expanders. Recall that a graph G with adjacency matrix AG and diagonal degree matrix D is said to be
a two-sided spectral expander if the normalized adjacency matrix D−1/2AGD

−1/2, which has eigenvalues (λi)i∈[n] in
[−1, 1] and top eigenvalue equal to 1, is such that |λi| ≤ εO(1) for 2 ≤ i ≤ n.
Consider a CSP supported on such a graph, in that φij ≡ 0 if ij is not an edge. For such graphs, it turns out the
algorithm discussed here outputs an assignment x such that∑

ij∈G
φij(xi, xj) ≥ OPT− ε|E(G)|.
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The situation is even more general. Suppose thatG is a graph whose normalized adjacency matrix, with eigenvalues
(λi)i∈[n], is such that there are at most r eigenvalues with |λi| ≥ εO(1). Then, a similar algorithm outputs x such that∑

ij∈G
φij(xi, xj) ≥ OPT− ε|E(G)|,

running in time npoly(log q,1/ε,r). This quantity r is sometimes called the “threshold rank” of G, and much effort has
been spent trying to show that low-threshold rank graphs behave like dense graphs in various senses. While the
details of this analysis are largely similar those we have presented, we omit them as their explanation would require
a detour into spectral graph theory – we refer the interested reader to
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