
Lectures 1-4: Quadratic Proofs and Max-Cut

Samuel B. Hopkins

September 16, 2024

Proof Algorithm

Figure 1: This course in a nutshell.

Reader beware: these notes have not been subjected to the usual scrutiny reserved for peer-reviewed publication,
and may contain errors.

This course is about a perspective on algorithm design which has come to be known as the
sum of squares method, or SoS for short. SoS originated in control theory and optimization, but
has found a new home in theoretical computer science. SoS has been key to numerous recent
algorithmic innovations in TCS, including algorithms for graph partitioning, high-dimensional
statistics, learning theory, quantum information, cryptography/cryptoanalysis, and beyond.

At the end of this course, you should have the ability to understand the increasingly-broad
research literature in TCS in which SoS is used, and to apply SoS to new problems in your own
research.

It is traditional to start a course like this by discussing one of the first major application of
SoS in TCS: the Goemans-Williamson approximation algorithm for the maximum cut problem.
Often this algorithm is presented in a somewhat mysterious way, without much connection to
algorithmic concepts which would be familiar from an undergraduate algorithms course. I will opt
for a slower presentation, with the goal of arriving at the Goemans-Williamson algorithm as an
almost-inevitable consequence of applying general principles from the SoS method to the maximum
cut problem. This, of course, also gives us the opportunity to introduce those principles.

1 Minimum and Maximum Cuts

Let’s start with the minimum and maximum cut problems.

Problem 1 (Min-(B, C)-Cut). Given a graph � = (+, �) and B, C ∈ + , find (⊆ + such that B ∈ (and
C ∈ (minimizing the number of cut edges �((, ().

1

Min-cut can be solved in polynomial time, e.g. by using Ford-Fulkerson or another max-flow
algorithm to find the maximum flow in the graph from B, C, then finding all the vertices reachable
from B in this flow’s residual graph.

Problem 2 (Max-Cut). Given a graph � = (+, �), find (⊆ + maximizing the number of cut edges �((, ().

Unlike its friend Min-Cut, Max-Cut is NP-hard, so we do not expect to design a polynomial-
time algorithm for it. Instead, we will aim for an approximation algorithm. As a reminder, an
-approximation algorithm (≥ 1) for Max-Cut takes a graph � and outputs a cut (⊆ + such that
�((, () ≥ 1

 ·OPT, where OPT is the number of cut edges in the optimal solution.

2-approximation forMax-Cut The simplest approximation algorithm forMax-Cut is the following:
include each E ∈ + in (independently with probability 1/2.

It is easy to show that every edge (8 , 9) is cut with probability 1/2, so the expected number of cut
edges is |� |/2. At the same time, the optimum value OPT ≤ |� | – we can’t do better than cutting all
of the edges. So

E(�((, () =
|� |
2
≥ OPT

2
,

and hence the algorithm is a 2-approximation. As an aside, this algorithm can be derandomized
into a greedy algorithm.

Question. Can we do better than a 2-approximation for Max-Cut?

To investigate, we will take a detour to the world of proofs and proof systems.

2 Proofs and (Approximation) Algorithms

Every approximation algorithm is a proof system for proving bounds on OPT.

Let us explain what is meant by this sentence in the contexts of Min-Cut and Max-Cut, staying
informal for now about what we mean by a “proof system.”

2.1 Min-Cut

Upper bounds on Min-Cut Suppose � is a graph held by a prover, Alice, who claims that
Min-Cut(G) ≤ :. Alice can convince a polynomial-time verifier, Bob, of this fact, by supplying
him with a cut (⊆ + such that �((, () ≤ :. Given the cut (, Bob can verify that �((, () ≤ : in
polynomial time. This is the argument which shows Min-Cut is in NP.

Lower bounds on Min-Cut What if Alice claims that Min-Cut(G) ≥ :? What kind of proof could
she show Bob? As you might recall from undegraduate algorithms, one type of proof Alice could
use is a valid flow from B to C. If Alice can show Bob a flow of value : from B to C, meaning that she
tells Bob how much flow to route on each edge of �, Bob can easily check that the flow is valid and
that its value is :, and hence that Min-Cut(�) ≥ :.

The max-flow min-cut theorem says that this kind of proof actually always exists – there is
always an (B, C) flow of value Min-Cut(�), and hence Alice can always convince Bob of any true
statement of the form Min-Cut(�) ≥ : by showing him a flow of value :.

2

2.2 Max-Cut

Lower bounds on Max-Cut Similar to the case of upper bounds on the Min-Cut, suppose Alice
claims that Max-Cut(�) ≥ :. Alice can convince a polynomial-time verifier, Bob, of this fact, by
simply supplying him with a cut (⊆ + such that �((, () ≥ :.

Upper bounds on OPT But now what if Alice claims that OPT ≤ :? What kind of proof could
she show Bob to convince him of this fact? Not so clear!

2.3 Approximation Algorithms are Proof Systems

Before we turn to particular kinds of proofs Alice might use, let’s justify the point of this detour:
if there is a (deterministic) -approximation algorithm ALG for Max-Cut, then there is a way for
Alice to convince Bob that OPT ≤ · : whenever OPT ≤ :.1

One way would be for Bob to just run ALG – whatever cut (ALG outputs will have value
�((, () ≤ OPT ≤ :, and since ALG is an -approximation algorithm, seeing ALG output (will
convince Bob that OPT ≤ �((, () ≤ :.

If we want to be more explicit about the proof system, we can imagine that Alice sends Bob a
transcript of the execution of ALG, and Bob can verify that the transcript is correct and that the cut
(output by ALG has value at most :, and hence that OPT ≤ :.

So, if we design, say, a 1.99-approximation algorithm for Max-Cut, in the course of doing
so we will have implicitly designed a proof system which Alice could use to convince Bob that
OPT ≤ 1.99: whenever OPT ≤ :. We might as well try to design the proof system explicitly.

3 Linear Proofs

Our goal is to design a proof system which Alice can use to convince Bob that Max-Cut(�) ≤ :. To
get inspiration, let’s return to Min-Cut and have a more explicit look at the proof system for lower
bounds on Min-Cut, through the lens of linear programming.

3.1 Linear Proofs and Min-Cut

We’ll start by writing down a linear program for Min-(B, C)-Cut. Our LP will have variables GE for
E ∈ + , and also HDE for edges (D, E) ∈ �. The intended meaning of the variables will be that GE = 1

if E ∈ (and GE = 0 otherwise, and HDE = 1 if (D, E) is a cut edge and HDE = 0 otherwise. The LP is:

min
G,H

∑
(D,E)∈�

HDE such that (1)

GB = 1 (2)
GC = 0 (3)
0 ≤ HDE ∀(D, E) ∈ � (4)
HDE ≥ GD − GE ∀(D, E) ∈ � . (5)

We are taking the tuples (D, E) to be ordered, and when there is an edge between D and E we assume
� contains (D, E) and (E, D). Notice that the final set of constraints encode the fact that HDE = 1 only

1Or, in complexity-theoretic terms, % ⊆ #% ∩ 2>#%.

3

if (D, E) is a cut edge with GD = 1 and GE = 0. We won’t prove it, but this LP is actually tight: the
optimal value is exactly equal to the Min-(B, C)-Cut value.

The LP offers a proof system for proving lower bounds on the Min-(B, C)-Cut value via duality.
As a reminder, a dual solution to the above LP consists of numbers �B ,�C ∈ R (multipliers for the
constraints GB = 1, GC = 0) and D,E , 5DE ≥ 0 for (D, E) ∈ � (multipliers for the inequality constraints)
such that ∑

(D,E)∈�
HDE − : = �B(GB − 1) + �CGC +

∑
(D,E)∈�

DEHDE + 5DE(HDE − (GD − GE))

where here we mean equality as linear functions of G and H. Because the RHS of the inequality above
must be nonnegative for every feasible solution G, H, the LHS must be as well, meaning that the
Min-(B, C)-Cut value is at least :. If Alice shows Bob the dual solution, he can verify that it satisfies
the above equality by checking that the coefficient of each variable G8 is the same on both sides.

This LP-based proof system is actually equivalent to the max-flow proof system from above! It’s
not too hard to prove that in order to satisfy the above equality, the dual variables 5DE have to be a
valid C , B flow of value :, where we route 5DE units of flow from D to E.

Proof sketch that 5DE is a valid flow of value :. The coefficient of HDE on the RHS is DE + 5DE and on
the LHS it’s 1. So we must have 1 = DE + 5DE , and hence 5DE ∈ [0, 1]. Thus 5 respects the edge
capacities.

For E ≠ B, C, the coefficient of GE on the RHS is
∑
D∈#(E) 5DE − 5ED , and on the LHS it’s 0. So we

must have
∑
D∈#(E) 5DE =

∑
D∈#(E) 5ED – that is, the incoming flow equals the outgoing flow at vertex

E.
The constant term on the RHS is −�B and on the LHS it’s −:, so we must have �B = :. But,

the coefficient of GB on the RHS is �B +
∑
D∈#(B) 5BE − 5EB and on the LHS it’s 0. So we must have∑

D∈#(B) 5BE − 5EB = −:, meaning that : units of flow are routed into B. �

Furthermore, reformulating what we said before about the max-flow proof system, by the
max-flow min-cut theorem, whenever Min-Cut(�) ≥ :, Alice can prove this to Bob by exhibiting
such �, , and 5 .

3.2 Linear Proofs and Max-Cut

A linear proof system turned out to be as powerful as we could hope for for Min-Cut. How about
for Max-Cut? Of course we don’t expect to come up with an exact LP formulation of Max-Cut, but
perhaps we can arrive at a useful LP relaxation and a corresponding proof system nonetheless.
(Even more optimistically, we might then hope to use that LP to go beyond a proof system and
actually design an approximation algorithm.)

Unfortunately, this approach won’t work out – in fact, one can show that there is no polynomial-
size LP relaxation of Max-Cut which gives a 2− � approximation for any � > 0 (although that result
is beyond the scope of this class). But let’s try to see why we can’t just use the same type of LP as for
Min-Cut.

As for Min-Cut, we can have variables GE for E ∈ + and HDE for (D, E) ∈ �, with the intended
meanings that HDE = 1 if (D, E) is a cut edge and HDE = 0 otherwise, and GD = 1 if D ∈ (and GD = 0

otherwise. The objective function is easy enough to write: max
∑
(D,E)∈� HDE . But how can we

constrain HDE so that it is 1 only if (D, E) is a cut edge? In the Min-Cut case used the fact that the LP

4

was trying to minimize HDE , together with the constraints HDE ≥ GD − GE , to force HDE to act like the
indicator for a cut edge. Now the LP is trying to maximize HDE , so we can’t use the same trick.

Of course, we could write down a silly LP relaxation of Max-Cut:

max
H

∑
(D,E)∈�

HDE s.t. 0 ≤ HDE ≤ 1 .

(Now we think of the (D, E) pairs as un-ordered.) The optimum value will always by |� |, meaning
that this LP gives just a 2-approximation to the value of the Max-Cut. Just for fun, let’s see the proof
system that this LP gives us: there are dual variables DE ,�DE ≥ 0, and to prove thatMax-Cut(�) ≤ :
we require that

: −
∑
(D,E)∈�

HDE =
∑
(D,E)∈�

DEHDE + �DE(1 − HDE) .

Unfortunately, this linear proof system for Max-Cut will never let Alice prove anything better than
Max-Cut(�) ≤ |� |.

4 Quadratic Proofs

The linear proof system for Max-Cut was not very useful. Our LP relaxation didn’t work well
because we didn’t have a good way to express the constraint that HDE = 1 only if (D, E) is a cut edge.

Observe, however, that if we were not so tied to linear functions of our variables, we would not
have this issue. It is traditional at this point to switch to placing the GE variables in {−1, 1}. For
GD , GE ∈ {−1, 1} we could directly write the indicator 1 (GD ≠ GE) as a quadratic function of GD , GE :

1 (GD ≠ GE) =
1

2
(1 − GDGE)

so that the Max-Cut objective function would be

max
G

1

2

∑
(D,E)∈�

1

2
− GDGE

2
.

Now let’s see how we could use this quadratic objective function to define a proof system
for Max-Cut. Suppose, as usual, that Alice wants to prove to Bob that Max-Cut(�) ≤ :. In the
linear proofs setting, Alice showed Bob a way to write the difference of : and the (linear) objective
function as a sum of pieces which Bob could easily verify were nonnegative. The “pieces” were
linear functions induced by constraints from the LP, which Bob knows must be nonnegative for any
feasible solution H. It is important that Bob has such an a priori reason to believe that the pieces are
nonnegative, because he does not have time to check nonnegativity for every feasible H.

Now the objective function is quadratic in G. What are some quadratic functions of G that Bob
can easily check are nonnegative for any feasible solution G?

Big idea: The square of every linear function with real coefficients is everywhere nonnegative!

So, suppose Alice could find < linear functions 51(G), . . . , 5<(G) – that is, each 58 has the form

58(G) =
∑
E∈+

58EGE

5

where 58E ∈ R – such that for every G ∈ {−1, 1}+ ,

: −
∑
(D,E)∈�

1

2
− GDGE

2
=

<∑
8=1

58(G)2 .

Then, assuming that Bob could actually check that this equation holds for all G ∈ {−1, 1}+ , he would
be convinced that Max-Cut(�) ≤ :.

How could Bob convince himself that the equation holds for all G ∈ {−1, 1}+ , without spending
time 2|+ |? If Bob were trying to verify that the equation holds for every G ∈ R+ , he could just check
that the coefficient of every degree-2monomial GDGE on the LHS is equal to the coefficient of the
same monomial on the RHS. It turns out that a similar approach works for G ∈ {−1, 1}+ , because of
the multivariate discrete Fourier transform:

Fact 3. Every function 5 : {−1, 1}= → R can be written uniquely as a multilinear polynomial in the G8’s;
that is, 5 (G) = ∑

(⊆[=] 5̂(·
∏

8∈(G8 where 5̂(∈ R.

So, given 51 , . . . , 5< , Bob can expand
∑<
8=1 58(G)2 in the monomial basis and replace each non-

multilinear term G2E with 1. Then he can compare the coefficients of each monomial on the LHS and
RHS to verify that the equation holds for all G ∈ {−1, 1}+ . This verification procedure clearly runs
in time polynomial in |+ |, <.

We are left with (at least) three questions:

1. (Proof existence) For which : can Alice find a proof that Max-Cut(�) ≤ :? In particular, do
such proofs exist for : < |� |?

2. (Proof size) Howmany linear functions 51 , . . . , 5< does Alice need to prove thatMax-Cut(�) ≤
:? In particular, can we always assume that the proof is polynomial-size, i.e. < ≤ |+ |$(1)?
(And, more subtly, that each 58 has bit complexity |+ |$(1)?)

3. (Algorithm) Do quadratic proofs like this correspond to a useful polynomial-time algorithm?

Before we answer these questions, we’ll do some examples to gain a bit of intuition about
quadratic proofs.

4.1 Quadratic proofs at least as good as linear ones

To make sure we haven’t accidentally made our lives worse, we should make sure that we can
find a quadratic proof that Max-Cut(�) ≤ |� |. In other words, can we find a sum-of-squares
representation of the function

|� | −
∑
(D,E)∈�

1

2
− GDGE

2
=
|� |
2
+

∑
(D,E)∈�

GDGE

2
?

We can do this by observing that (GD + GE)2 = G2D + G2E + 2GDGE = 2 + 2GDGE , so

|� |
2
+

∑
(D,E)∈�

GDGE

2
=

∑
(D,E)∈�

1

4
(GD + GE)2 .

6

4.2 Quadratic proofs can be better than linear ones: the triangle

The simplest graph � = (+, �)whose maximum cut is strictly smaller than |� | is the triangle. (Every
one and two edge graph is bipartite.) So, let + = {1, 2, 3} and edges � = {(1, 2), (2, 3), (3, 1)}:

1 2

3

The actual Max-Cut value is 2. The best upper bound we could hope for from a linear proof
system is |� | = 3. Can we find a quadratic proof that Max-Cut(�) ≤ 2.9 < 3? In fact, there’s a
simple way to do so: note that

(G1 + G2 + G3)2 = G21 + G22 + G23 + 2(G1G2 + G2G3 + G3G1) = 3 + 2(G1G2 + G2G3 + G3G1) .

So,
2.25 − (1

2
− G1G2

2
) − (1

2
− G2G3

2
) − (1

2
− G3G1

2
) = 1

4
(G1 + G2 + G3)2 .

This is our first proof which beats the linear proof system!

4.3 Quadratic proofs from eigenvalues

The triangle graph is pretty simple. It actually turns out that quadratic proofs improve over linear
proofs for every non-bipartite graph. (For a bipartite graph the maximum cut value is actually |� |.)
For simplicity, we will illustrate this only for regular graphs.

Fact 4. Let � be the adjacency matrix of a connected, 3-regular non-bipartite graph � = (+, �). Then the
least eigenvalue �min(�) satisfies �min(�) > −3.

Proof. Suppose for contradiction that E is an eigenvector of � with eigenvalue −3; let ‖E‖ = 1 Then
E would be orthogonal to the all-1s vector, so it has some negative and some positive coordinates.
Now consider (�E)8 =

∑
9∼8 E 9 , and hence

32‖E‖2 = ‖�E‖2 =
∑
8

©«
∑
9∼8

E 9
ª®¬
2

.

Now, by Cauchy-Schwarz, each term (∑9∼8 E 9)2 ≤ 3
∑
9∼8 E

2
9
, with equality only if E 9 = E: for all

9 , : ∼ 8. But indeed the equality case must obtain for all 8, since
∑
8

(∑
9∼8 E 9

)2
= 32‖E‖2.

We claim that the partition of + into vertices 8 for which E8 ≤ 0 and E8 > 0 is a bipartition of
�. Suppose for a contradiction that there is an edge 8 ∼ 9 for a pair 8 , 9 with E8 , E 9 > 0. Then every
neighbor of 8 must have E: > 0, and similarly for 9 – iterating this argument, E must be nonnegative
on the entire connected component containing 8 and 9 – since � is connected, this is all of + . But
that’s a contradiction, since E is orthogonal to the all-1s vector. �

It turns out that the fact that�min(�) > −3 is enough to give a quadratic proof thatMax-Cut(�) <
|� |.

7

Theorem 5. Fix a 3-regular graph � = (+, �) with adjacency matrix �. There is a quadratic proof that
Max-Cut(�) ≤ 1

2 (1 −
�min(�)

3)|� |

To prove Theorem 5, we need a linear algebra refresher.

Positive-Semidefinite Matrices: For a symmetric matrix " ∈ R=×= , the following are
equivalent. If " satisfies any/all of them, we say it is positive semi-definite, or PSD.

1. " has all nonnegative eigenvalues.

2. For all G ∈ R= , 〈G, "G〉 ≥ 0.

3. There is a matrix ! ∈ R=×= such that " = !!>.

We need a lemma to relate eigenvalues to quadratic proofs:

Lemma 6. Let " ∈ R=×= be a symmetric matrix. There exist = linear functions 51 , . . . , 5= on = variables
such that

|�min(")| · ‖G‖2 + G>"G =

=∑
8=1

58(G)2 .

(Here the equality holds as degree-2 polynomials over R= .)

Proof of Lemma 6. The matrix |�min(")| · � + " is positive semi-definite (where � is the identity
matrix), so it has a decomposition as !!>. Take 58(G) =

∑=
9=1 !8 9G 9 . �

Now we can prove Theorem 5.

Proof of Theorem 5. We can write the Max-Cut objective function as∑
(8 , 9)∈�

1

2
−
G8G 9

2
=
|� |
2
− 1

4
G>�G =

|� |
2
+ 1

4
G> (�min(�) · � − �) G −

1

4
�min(�) · ‖G‖2 ,

where the 1/4 shows up because each edge appears twice in G>�G, as � is a symmetric matrix.
Now we can apply Theorem 5 to conclude that there is a degree-2 sos polynomial (>((G) such that

Max-Cut(�) = |� |
2
+ (>((G) − 1

4
�min(�) · ‖G‖2 .

Now, for every G ∈ {±1}= , we have ‖G‖2 = = = 2|� |/3. So for every G ∈ {±1}= , we have

|� |
2
+ (>((G) − 1

4
�min(�) · ‖G‖2 =

1

2

(
1 − �min(�)

3

)
|� | ,

which concludes the proof. �

It turns out that this eigenvalue-based SoS proof is enough to show a strong result for random
graphs, although we won’t be equipped to prove this until later in the semester when we get
acquainted with random matrices.

Theorem 7. With high probability over the choice of � ∼ �(=, 1/2), there is a polynomial-size quadratic
proof that Max-Cut(�) ≤ (0.5 + >(1))|� |.

8

5 From Quadratic Proofs to an Algorithm for Max-Cut

We have a promising proof system on our hands. How could we use it to design an (approximation)
algorithm for Max-Cut?

5.1 Convexity, Duality and Pseudoexpectations

In the Min-Cut setting, where we had a linear proof system, the proof system and the Min-Cut LP
were related by LP duality. We would like to find an appropriate generalization of LP duality which
will enable us to convert our quadratic proof system into an approximation algorithm for Max-Cut.
As a first step, we observe that the set of “possible right-hand sides” for a quadratic proof is convex.

Lemma 8 (Convexity of Sum-of-Squares Polynomials). For any 3 ∈ N, the set of functions ?(G) :

{−1, 1}= → R for which there exist 51 , . . . , 5< of degree≤ 3 such that ?(G) = ∑<
8=1 58(G)2 for all G ∈ {−1, 1}=

is convex. We call this set SoS3

Proof. The proof is straightforward: if ?(G) = ∑<
8=1 58(G)2 and @(G) = ∑<

8=1 68(G)2, then for any
� ∈ [0, 1]we have

�?(G) + (1 − �)@(G) =
<∑
8=1

(
√
� 58(G))2 + (

√
(1 − �)68(G))2 . �

So we can phrase the question “is there a quadratic proof that Max-Cut(�) ≤ :?” as a convex
membership problem: is : −∑

(8 , 9)∈�
1
2 −

G8G 9
2 in SoS1?

9

Convex Duality 101 (Informal): Recall that C ⊆ R= is convex if for every G, H ∈ C, also
G+H
2 ∈ C. There is a rich theory of convex geometry – we will discuss a tiny portion of it, on

the topic of convex duality, and not be particularly formal about it for now. Formal treatments,
handling technical issues I won’t discuss here, are available in many textbooks.

Every convex C set looks kind of like this:

The dashed lines are “supporting hyperplanes” of C – they are hyperplanes which lie on one
side of C, and intersect (the closure of) C at one or more points. Every point on the boundary
of a convex set is intersected by some supporting hyperplane. A “separating” hyperplane lies
on one side of the convex set, and need not intersect C at any point. The set of all separating
hyperplanes is called the “dual” of C.
Formally, if C ⊆ R= is a convex set, a separating hyperplane is an affine function 5 : R= → R
such that 5 (G) ≥ 0 for all G ∈ �. The hyperplane 5 is supporting if there is some G in
the closure of C with 5 (G) = 0. Convexity of the set of separating hyperplanes is clear: if
5 (G), 6(G) ≥ 0 for all G ∈ C, then also 5 (G)+6(G)

2 ≥ 0.

Furthermore, any G ∉ closure(C) if and only if there is a separating hyperplane for G; that is
a separating hyperplane 5 of C such that 5 (G) < 0.

Duals to Quadratic Proofs Now that we know about convex duality, let’s figure out what the
convex dual of SoS1 is. Let us think of SoS1 as a subset of R[G1 , . . . , G=]<≤2, the vector space of
multilinear polynomials in variables G1 , . . . , G= with real coefficients and degree at most 2.2 (The
“<” stands for multilinear – it is not standard notation.) A separating hyperplane for SoS1 is an
affine function ℒ :→ R such that ℒ[?] ≥ 0 for all ? ∈ SoS1.3 Because of some special structure of
SoS1 (it is actually a convex cone), we’ll be able to assume that ℒ is actually linear rather than affine,
and satisfies a normalization condition. This is captured by the following theorem.

Theorem 9. Let ? ∈ R[G1 , . . . , G=]<≤2 and let � > 0. If ? + � ∉ SoS1, then there is a linear function
Ẽ : R[G1 , . . . , G=]<≤2 → R satisfying:

1. Positivity on SoS polynomials: Ẽ[@(G)] ≥ 0 for every @ ∈ SoS1
2If we want to be picky about thinking of convex sets as living in R# for some value of # , we could identify

R[G1 , . . . , G=]≤2 with R(
#
2)+#+1 by identifying a polynomial with the list its of coefficients in the monomial basis.

3We use the notation ℒ[?] for the function ℒ applied to the polynomial ?, rather than ℒ(?), for reasons which will be
clear later.

10

2. Normalization: Ẽ[1] = 1

3. Separation: Ẽ[?(G)] < 0.

Conversely, if such a Ẽ exists, then ? ∉ SoS1.

Proof. The “if” direction is clear, so we prove the “only if”. By the separating hyperplane theorem
for convex sets, ? + � ∉ SoS1 implies that there is a hyperplane ℒ separating ? + � from SoS1. We
claim that the linear function defined by ℒ′[@] = ℒ[@] − ℒ[0] for all @ also separates ? + � from
SoS1.

We claim that ℒ[0] ≥ 0, as otherwise there would be a positive 2 > 0 such that ℒ[2] < 0, by
continuity, but since 2 = (

√
2)2 this can’t happen. So, ℒ′[? + �] = ℒ[? + �] − ℒ[0] ≤ 0.

It just remains to verify that ℒ′[@] ≥ 0 for every @ ∈ SoS1; then we can scale ℒ′ by a nonnegative
scalar to make it satisfy the normalization condition. It will be enough to show that ℒ[@] ≥ ℒ[0]
for every @ ∈ SoS1. Fix @ ∈ SoS1 and consider the affine function of a single real variable � given by
C(�) = ℒ[�@] = C1� + C0 for some real numbers C1 , C0. We claim that C1 ≥ 0, as otherwise by taking �
sufficiently large, we could make ℒ[�@] < 0, which is impossible. So, C(�) is monotone decreasing
in �. But C(0) = ℒ[0], so we are done.

Let Ẽ[@] = ℒ[@]/ℒ[1], so that Ẽ[1] = 1. Then Ẽ[? + �] ≤ 0, hence Ẽ[?] < 0. �

Definition 10 (Pseudoexpectation over the Hypercube). We call a linear function Ẽ : R[G1 , . . . , G=]<≤2
satisfying the positivity and normalization conditions of Theorem 9 a degree 2 pseudoexpectation.

We often extend a pseudoexpectation Ẽ to a linear function on all of R[G1 , . . . , G=]≤2 by defining
Ẽ[G2

8
] = 1 and extending linearly. Notice that this extension has the property that two polynomials

?, @ for which ?(G) = @(G) for all G ∈ {±1}= must have Ẽ[?(G)] = Ẽ[@(G)]. In particular, for every
linear function @(G), Ẽ[@(G)2] ≥ 0.

Duality for Max-Cut Quadratic Proofs Theorem 9 has the following consequence for Max-Cut:

Corollary 11. Let � = (+, �) be a graph. Then

inf

: : : −
∑
(8 , 9)∈�

1

2
−
G8G 9

2
∈ SoS1

 = sup Ẽ

∑
(8 , 9)∈�

1

2
−
G8G 9

2

 .
Proof. If : is such that : −∑

(8 , 9)∈�
1
2 −

G8G 9
2 ∉ SoS1, then there exists Ẽ such that

Ẽ

: − � −
∑
(8 , 9)∈�

1

2
−
G8G 9

2

 < 0 ,

which rearranges to

Ẽ

∑
(8 , 9)∈�

1

2
−
G8G 9

2

 ≥ Ẽ[: − �] = : − � .
Since this holds for every � > 0, we have the corollary. �

At this point, our hoped-for outline of an algorithm for Max-Cut is:

11

1. Given a graph �, find a pseudoexpectation Ẽmaximizing Ẽ[∑(8 , 9)∈� 1
2 −

G8G 9
2].

2. Use Ẽ to find a cut in � which cuts many edges.

For (1), we can be optimistic, because the set of pseudoexpectations is convex and only ≈ =2-
dimensional, when � is an =-vertex graph, and we are trying to maximize a linear function over
it. The set of pseudoexpectations isn’t a polytope (that is, the feasible region of a linear program),
so we can’t use linear programming for (1), but we will be able to use a generalization of linear
programming called semidefinite programming. For now, we will pretend that we can solve (1) in
polynomial time, and move on to (2), for which we need to understand better how to think of a
pseudoexpectation.

What is a Pseudoexpectation, Anyway? We have a formal defintion of a pseudoexpectation, but
it’s not very intuitive. A good way to think of a degree-2 pseudoexpectation is that is tells us the
degree-two moments (that is, means and covariances) of a “fictional” probability distribution over
{±1}= .

Exercise 12. Let � be a probability distribution over {±1}= and define Ẽ[?(G)] = EG∼� ?(G). Show that Ẽ
is a degree-2 pseudoexpectation.

So, every distribution over the hypercube gives a pseudoexpectation. The reverse is not true.

Exercise 13. Find a degree-2 pseudoexpectation Ẽ over {±1}3 which is not induced by any distribution over
{±1}3.

Even so, it helps to think of a pseudoexpectation as specifying moments of a probability
distribution. In the case of Max-Cut, the pseudoexpectation appears to be the second moments of a
probability distribution over cuts in � which cut a lot of edges. Our goal is to use these second
moments to find an actual cut which cuts a lot of edges. It is tempting to try and sample from a
distribution which induces the pseudoexpectation, but this isn’t allowed – there may be no such
distribution!

To make things a little more concrete, let’s see how we would represent a pseudoexpectation.
Recall that the monomials 1, G1 , . . . , G= , G1G2 , G1G3 , . . . , G=−1G= form a basis for R[G1 , . . . , G=]<≤2. So
we can specify Ẽ by specifying Ẽ G1 , Ẽ G2 , . . . , Ẽ G= , Ẽ G1G2 , . . . for all multilinear monomials of
degree ≤ 2. Any such list of = +

(
=
2

)
numbers represents a linear operator from R[G1 , . . . , G=]≤2 to R.

The following exercise shows that this list of numbers represents a pseudoexpectation if and only if
an associated “moment matrix” is positive semi-definite.

Exercise 14. Let Ẽ be a linear operator from R[G1 , . . . , G=]≤2 to R. Then Ẽ satisfies the condition
Ẽ ?2 ≥ 0 for all ? with degree at most 1 if and only if the matrix Ẽ[(1, G)(1, G)>] � 0. Here the notation
(1, G) indicates the (= + 1)-dimensional vector of degree ≤ 1 monomials obtained by concatenating the
constant function 1 with the variables G1 , . . . , G= , so the matrix Ẽ[(1, G)(1, G)>] contains the entries
Ẽ[1], Ẽ[G1], . . . , Ẽ[G=], Ẽ[G21] = 1, Ẽ[G1G2] . . . , Ẽ[G2=] = 1.

5.2 Gaussian Rounding

Goemans and Williamson had the following amazing idea for how to use a pseudoexpectation to
find a cut which cuts a lot of edges. To express it, we need the following lemma.

12

Lemma 15. Let Ẽ be a degree-2 pseudoexpectation. There is a Gaussian distributionN over R= such that
for every ? ∈ R[G1 , . . . , G=]<≤2, we have Ẽ[?(G)] = EH∼N ?(H).

Proof. We let � = Ẽ[G] and Σ = Ẽ[(G − �)(G − �)>]. We claim that there is a Gaussian distribution
whose mean and covariance are � and Σ. We first establish that the matirx Σ is PSD. Let E ∈ R= ; we
need to show that 〈E,ΣE〉 ≥ 0. But 〈E,ΣE〉 = Ẽ[〈E, G − �〉2] ≥ 0. Since Σ is PSD, there is a matrix �
such that Σ = ��>. Let the Gaussian random vector H be given by sampling 6 ∼ N(0, �=×=), and
letting

H = � + �6 .

�

Goemans-Williamson Rounding Given a degree-2 pseudoexpectation Ẽ, define Ẽ
′[?(G)] =

1
2 Ẽ[?(G)] + 1

2 Ẽ[?(−G)], so that Ẽ
′[G] = 0. Sample H from the Gaussian distribution N whose

mean and covariance are given by Ẽ
′
. Then, output the cut (= {8 : H8 ≥ 0}.

Theorem 16. Let � = (+, �) be a graph and let Ẽ be a degree-2 pseudoexpectation. Then the cut (output
by Goemans-Williamson rounding satisfies

E |�((, ()| ≥ 0.878 · Ẽ

∑
(8 , 9)∈�

1

2
−
G8G 9

2

 .
For the proof of this theorem, we refer to [1]

5.3 Finding a pseudoexpectation via ellipsoid

Our Max-Cut algorithm will rely on one more crucial ingredient: an efficient algorithm to actually
find Ẽ such that Ẽ

[∑
(8 , 9)∈�

1
2 −

G8G 9
2

]
is (close to) maximal. We will rely on the famous ellipsoid

algorithm.

5.3.1 Ellipsoid Algorithm

Let C ⊆ R# be a convex set. A separation oracle for C is an algorithm with the following guarantee.
It takes as input G ∈ R# and produces one of two outputs. Either it outputs “G ∈ C,” or it outputs
“G ∉ C”, together with a separating hyperplane: that is, it also produces E ∈ R# , 1 ∈ R such that
〈E, G〉 < 1, but 〈E, H〉 ≥ 1 for all 1 ∈ C.

The ellipsoid algorithm interacts with a convex set C via a separation oracle for C. It queries
the oracle on a carefully-chosen sequence of points (the centers of a carefully-chosen sequence
of ellipsoids, hence the name of the algorithm). After not-too-many queries, it produces G ∈ C,
assuming C is “not too small”. Formally, the ellipsoid algorithm has the following guarantee.

Theorem 17. Suppose C is contained in a ball of radius ' > 0 about the origin, and contains a ball of
radius A > 0 (not necessarily about the origin!). Then, in (# log('/A))$(1) calls to a separation oracle for C,
ellipsoid produces G ∈ C.

Here we think of A as really tiny, so that “C is empty” and “C does not contain a ball of radius A”
are “morally” the same statement. An important corollary is that if we have a separation oracle for a

13

convex set C which we know is contained in a ball of radius ' about the origin but may or may not
contain a ball of radius A, then if the ellipsoid algorithm fails to produce G ∈ C after (# log('/A))$(1)
queries, we have learned that C does not contain a ball of radius A. (Informally, we learn that C is
“essentially empty”.)

5.3.2 A separation oracle for pseudoexpectations

The most important component we need in order to use ellipsoid to find a pseudoexpectation is a
separation oracle for the set of pseudoexpectations. Formally, we actually need a separation oracle
for the set of pseudoexpectations which satisfy Ẽ

[∑
(8 , 9)∈�

1
2 −

G8G 9
2

]
≥ �, where � > 0. What type of

object is a separating hyperplane, in this context? Degree-2 polynomials! (Exercise: why?)
So, suppose we are given a list of numbers Ẽ[G1], Ẽ[G2], . . . , Ẽ[G=], Ẽ[G1G2], Our separation

oracle takes the following steps. First, we check whether∑
(8 , 9)∈�

1

2
−
Ẽ[G8G 9]

2
≥ � .

If not, then we can return the polynomial
∑
(8 , 9)∈�

1
2 −

G8G 9
2 and the bound � as our separating

hyperplane.
If so, then we need to check whether Ẽ satisfies the positivity condition. By the above exercise,

we know this happens if and only if the moment matrix Ẽ[(1, G)(1, G)>] � 0. So, we form this matrix.
It turns out that in polynomial time it is possible to decide whether a matrix is PSD, and if it is
not, to find a vector E such that E> Ẽ[(1, G)(1, G)]>E < 0. If the matrix is PSD, then Ẽ is in the set we
want, so our separation oracle doesn’t have to do anything. If the matrix is not PSD, then we return
the polynomial 〈(1, G), E〉2 and the bound 0 as our separating hyperplane.

5.3.3 Big ball

We need to show that the set of pseudoexpectations satisfying Ẽ
[∑
(8 , 9)∈�

1
2 −

G8G 9
2

]
≥ � is contained

in a ball of radius ', for some reasonable value of '. This is not so hard.

Exercise 18. Let Ẽ be a degree-2 pseudoexpectation. Show that
∑
8≤=(Ẽ[G8])2 +

∑
8 , 9≤=(Ẽ[G8G 9])2 ≤ $(=2),

and hence that the set of all degree-2 pseudoexpectations is contained in a ball of radius $(=) around the
origin.

5.3.4 Small ball

Finally, we need to handle ellipsoid’s “little ball” condition, regarding the small ball of radius A > 0.
This is a bit more delicate. We will show the following:

Lemma 19. Suppose Ẽ0 is a pseudoexpectation and ? ∈ R[G1 , . . . , G=]<≤2. Then the set of pseudoexpectations

{Ẽ : Ẽ[?] ≥ Ẽ0[?] − �}

contains a ball of radius A ≥ �/(‖?‖=)$(1), where ‖?‖ is the ℓ2-norm of the vector of coefficients of ?.

14

Proof. The ball will be centered at Ẽ1 = (1 − �) Ẽ0 +� · ED=8 5 , where ED=8 5 is the linear operator such
that ED=8 5 @(G) = EG∼{±1}= @(G); we will later choose � > 0 small enough.

The moment matrix Ẽ1[(1, G)(1, G)>] � �� clearly has all eigenvalues at least �. So if we have a
symmetric matrix " such that ‖"‖ ≤ �, the matrix Ẽ1 +" � 0, where ‖"‖ denotes the (absolute
value of the) maximum-magnitude eigenvalue. Now if we take any Ẽ in a ball of radius �/10 around
Ẽ1, that is, such that

‖ Ẽ− Ẽ1 ‖2 =
∑
8≤=
(Ẽ[G8] − Ẽ1[G8])2 +

∑
8 , 9≤=
(Ẽ[G8G 9] − Ẽ1[G8G 9])2 ≤ �2/100

then ‖ Ẽ[(1, G)(1, G)>] − Ẽ1[(1, G)(1, G)>]‖ ≤ �, so we are done. �

5.4 Putting it together

In the preceeding section, we have shown that if there exists Ẽ such that Ẽ
∑
(8 , 9)∈�

1
2 −

G8G 9
2 ≥ �, then

in time polynomial in = and log(1/�), we can find another Ẽ such that Ẽ
∑
(8 , 9)∈�

1
2 −

G8G 9
2 ≥ � − �. So

our final Max-Cut algorithm is:

1. Via binary search and ellipsoid, find a pseudoexpectation Ẽ such that Ẽ
∑
(8 , 9)∈�

1
2 −

G8G 9
2 ≥

maxG∈{±1}=
∑
(8 , 9)∈�

1
2 −

G8G 9
2 − 2−= . (Exercise: why does such Ẽ have to exist?)

2. UseGoemans-Williamson rounding tofinda cut(such thatE |�((, ()| ≥ 0.878·Ẽ
[∑
(8 , 9)∈�

1
2 −

G8G 9
2

]
.

6 Optional: The size of quadratic proofs

Now we have a complete account of the Goemans-Williamson Max-Cut algorithm, including
essentially a complete proof of correctness (or as complete as we will get, anyway). Although it’s
not needed for the analysis of the algorith, there’s one big loose end left regarding the quadratic
proof system for Max-Cut: how big are the proofs?

We’ll prove the following theorem showing that quadratic proofs always have small representa-
tions.

Theorem 20. Suppose ? is a degree-≤ 2 polynomial in = variables G1 , . . . , G= , and suppose that there is a
quadratic proof that ?(G) ≥ 0 for G ∈ {±1}= . That is, suppose that there are linear functions 51 , . . . , 5< such
that for every G ∈ {±1}= we have ?(G) = ∑

8≤< 58(G)2. Then, without loss of generality, < ≤ = + 1, and
each 58 satisfies ‖ 58 ‖ ≤ ‖?‖ · =$(1), where ‖ 58 ‖ is the ℓ2-norm of the vector of coefficients of 58 .

The theorem follows from the following characterization of quadratic proofs.

Lemma 21. The inequality ?(G) ≥ 0 has a quadratic proof if and only if there exists an = + 1× = + 1 matrix
" such that:

• Tr" = ?̂1, and

• "∅,8 = ?̂8/2, "8 ,∅ = ?̂8/2, and

• "8 9 = " 98 = ?̂8 9/2 for 8 ≠ 9, and

• " � 0.

15

where ? = ?̂1 +
∑
8≤= ?̂8G8 +

∑
8 9≤=,8≠9 ?̂8 9G8G 9 , and the rows and columns of " are indexed by (∅, 1, . . . , =).

The proof is a simple manipulation of definitions so we omit it.

Proof of Theorem 20. Let " be the matrix guaranteed by the foregoing lemma. " has a square root,
" = !!>, and ! ∈ R=+1×=+1. So, using the rows of ! as the summands, we can take < ≤ = + 1.

It will suffice now to show that ‖!‖ ≤ ‖?‖ · =$(1). Notice that the ℓ2 norm of each row of ! is a
diagonal entry of ". Since " � 0, its diagonal entries are nonnegative, so all of them are at most
?̂1. So, ‖!‖ ≤ ‖?‖ · =$(1). �

Theorem 20 can be used to show that for every � > 0, there is also a quadratic proof that ?+ � ≥ 0

which can be represented using only $(log(=‖?‖/�)) bits.

Acknowledgements

This lecture is heavily inspired by several lectures in Ryan O’Donnell’s Theory’s Toolkit course at
CMU, as captured inhttps://youtube.com/playlist?list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&
si=Yb4BSZ4iz75hn2rH.

References

[1] Boaz Barak andDavid Steurer. Proofs, beliefs, and algorithms through the lens of sum-of-squares,
2019. Lecture notes.

16

https://youtube.com/playlist?list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&si=Yb4BSZ4iz75hn2rH
https://youtube.com/playlist?list=PLm3J0oaFux3ZYpFLwwrlv_EHH9wtH6pnX&si=Yb4BSZ4iz75hn2rH

	Minimum and Maximum Cuts
	Proofs and (Approximation) Algorithms
	Min-Cut
	Max-Cut
	Approximation Algorithms are Proof Systems

	Linear Proofs
	Linear Proofs and Min-Cut
	Linear Proofs and Max-Cut

	Quadratic Proofs
	Quadratic proofs at least as good as linear ones
	Quadratic proofs can be better than linear ones: the triangle
	Quadratic proofs from eigenvalues

	From Quadratic Proofs to an Algorithm for Max-Cut
	Convexity, Duality and Pseudoexpectations
	Gaussian Rounding
	Finding a pseudoexpectation via ellipsoid
	Ellipsoid Algorithm
	A separation oracle for pseudoexpectations
	Big ball
	Small ball

	Putting it together

	Optional: The size of quadratic proofs

