Problem Set 1

Samuel B. Hopkins

September 3, 2024

Due: 9/24, 11:59pm. Please typeset your solutions in LaTeX.

Problem 1 (SoS proofs beyond eigenvalues). We saw in lecture that if $M \in \mathbb{R}^{n \times n}$ is a symmetric matrix with maximum eigenvalue λ than there is always a degree 2.5 oS proof that $x^{\top}Mx \leq \lambda$. $||x||^2$ with maximum eigenvalue λ_{max} , then there is always a degree-2 SoS proof that $x^{\top} M x \leq \lambda_{max} \cdot ||x||^2$ – that is, the polynomial $\lambda_{max} \cdot ||x||^2 - x^{\top} M x$ is a sum of squares.

- 1. Show that this bound is tight, in the sense that if *c* is such that $c||x||^2 x^{\top}Mx$ is a sum of squares than $c > \lambda$ squares, then $c \geq \lambda_{max}$.
- 2. Construct a symmetric matrix M such that there exists $c < \lambda_{max}(M)$ and linear functions f_1, \ldots, f_m such that $c \cdot ||x||^2 - x^{\top} Mx = \sum_{i \leq m} f_i(x)^2$ for every $x \in \{\pm 1\}^n$. This shows that the floxibility in a quadratic proof to use a sum of squares polynomial which is equal to the flexibility in a quadratic proof to use a sum of squares polynomial which is equal to $c||x||^2 - x^{\top}Mx$ only for certain xs (namely, $x \in {\pm 1}^n$) makes the definition more powerful.

Problem 2 (Max cut in almost-bipartite graphs)**.** Show that there is a polynomial-time algorithm with the following guarantee: given a graph $G = (V, E)$ such that there is a cut which cuts $(1 - \varepsilon)|E|$
odges the electric putpute a gut which guts $(1 - \tilde{O}(\sqrt{\varepsilon}))|E|$ adges (\tilde{O}) can hide fectors of $\log(1/\varepsilon)$ edges, the algorithm outputs a cut which cuts $(1 - \tilde{O}(\sqrt{\varepsilon}))|E|$ edges. (\tilde{O} can hide factors of $\log(1/\varepsilon)$, though this is not strictly necessary.)

You may use the following basic anticoncentration fact for Gaussians: if $Z \sim N(0, 1)$, then $Pr(|Z| \le \delta) = O(\delta).$

Problem 3 (Cauchy-Schwarz for Pseudoexpectations)**.** An important fact about any probability distribution μ is that for any real-valued f and g , $\mathbb{E}_{x \sim \mu} f(x)g(x) \leq \sqrt{\mathbb{E} f(x)^2} \cdot \sqrt{\mathbb{E} g(x)^2}$. Show that if $\tilde{\mathbb{E}}$ is

a (degree 2) pseudoexpectation and f , g are linear functions, one has $\tilde{\mathbb{E}}f(x)g(x) \leq \sqrt{\tilde{\mathbb{E}}f(x)^2} \cdot \sqrt{\tilde{\mathbb{E}}g(x)^2}$.

Problem 4 (Max cut on the triangle)**.** The three-edge triangle graph has a max-cut value of 2. We saw in class that there is a quadratic proof that the maximum cut is at most ².9. Is there a quadratic proof that the max-cut value is at most ².00001? (Prove the correctness of your answer.)