Problem Set 2

Samuel B. Hopkins

Last updated October 6, 2024

Due: 10/8, 11:59pm.

Please typeset your solutions in LaTeX.

Problem 1 (On ⊨, borrowed from Aaron Potechin)**.** Consider the following polynomial equation in 3 variables, x , y , z .

$$
(x^2+1)y=z^2.
$$

Because it implies $y = \frac{z^2}{x^2+}$ sum-of-squares can capture this reasoning. $\frac{z^2}{z+1}$, any solution (x, y, z) to the above must have $y \ge 0$. We will see if

1. Construct a degree 4 pseudoexpectation $\widetilde{\mathbb{E}}$ in variables x , y , z such that $\widetilde{\mathbb{E}} \models (x^2 + 1)y = z^2$ but $\widetilde{\mathbb{E}} y \leq 0$. (Computer aided proofs are allowed) \widetilde{E} y < 0. (Computer-aided proofs are allowed.)

By $\widetilde{\mathbb{E}}$ \models $(x^2 + 1)y = z^2$, we mean that for any polynomial p of degree at most 1 in x, y, z , $\widetilde{\mathbb{E}}$ $n(x, y, z)(x^2 + 1)y = \widetilde{\mathbb{E}} n(x, y, z)z^2$ $\widetilde{\mathbb{E}} p(x, y, z)(x^2 + 1)y = \widetilde{\mathbb{E}} p(x, y, z)z^2.$

2. Despite the above, show that there exists a sum-of-squares refutation to the following system of polynomial inequalities, for any $c > 0$: $\{(x^2 + 1)y = z^2, y \le -c\}$.

Problem 2. Suppose $\widetilde{\mathbb{E}}$ is a pseudoexpectation of degree d, with d even, and $\widetilde{\mathbb{E}} \models p \leq 0, p \geq 0$ for some polynomial p. (Informally, we have been writing $\widetilde{\mathbb{E}} \models p = 0$.) Show that if p has even degree, for every q such that the degree of pq is at most d, we have $E pq = 0$. Similarly, show that if p has odd degree, for every q such that the degree of pq is at most $d - 1$, we have $E pq = 0$.

Problem 3. In class, we saw how Gaussian rounding and global correlation could be used to approximate the max-cut of a graph. In this exercise, we will see how similar ideas can be used for *max-bisection*. Let $G = (V, E)$ be a graph with $|V| = n$ even. The goal in the max-bisection problem is to determine

$$
\mathsf{OPT} = \max_{\substack{S \subseteq V \\ |S| = n/2}} E(S, \overline{S}),
$$

where $E(S, \overline{S})$ is the size of the cut corresponding to S, that is, the number of edges between S and \overline{S} . The goal in this exercise will be to prove the following theorem.

Theorem. Let *G* be a regular graph with max-bisection value at least $(1 - \varepsilon)|E|$. There exists an algorithm $\lim_{n \to \infty} \frac{(|f(\varepsilon)|^{O(1)}}{n!}$ that submits a bisection suffixed $(1 - O(\sqrt{\varepsilon}))$ Figures and α *running in time* $n^{(1/\varepsilon)^{O(1)}}$ that outputs a bisection cutting $(1 - O(\sqrt{\varepsilon}))|E|$ edges.

Let $\widetilde{\mathbb{E}}$ be a pseudodistribution over $\{\pm 1\}^n$ such that

$$
\widetilde{\mathbb{E}} \models \left\{ \frac{1}{4} \sum_{ij \in E} (y_i - y_j)^2 \ge (1 - \kappa) |E|, \sum y_i = 0 \right\}.
$$

- 1. Suppose we apply Gaussian rounding to $\widetilde{\mathbb{E}}$ to produce a random vector $z \in \{\pm 1\}^n$. Show that if the global information of $\widetilde{\mathbb{E}}$ is at most δ , then $\text{Var}(\Sigma z_i) \leq \delta \Omega(1)$, n^2 if the global information of $\widetilde{\mathbb{E}}$ is at most δ , then $\text{Var}\left(\sum z_i\right) \leq \delta^{\Omega(1)} \cdot n^2$.
- 2. For $\delta > 0$, explain how to round E of degree poly(1/ δ) sufficiently large to a distribution z over $\{\pm 1\}^n$ such that

$$
\frac{1}{4} \mathbb{E} \sum_{ij \in E} (z_i - z_j)^2 \ge (1 - O(\sqrt{\kappa}))|E|
$$

and

$$
\mathbf{Var}\left(\sum z_i\right) \leq \delta n^2.
$$

3. Using the above, design a (randomized) algorithm running in time $n^{(1/\varepsilon)^{O(1)}}$ that outputs $\tilde{\chi} \in \left(\pm 1\right)$ ⁿ such that $\sum \tilde{\chi} = 0$ and $z \in {\pm 1}^n$ such that $\sum z_i = 0$ and

$$
\frac{1}{4} \sum_{ij \in E} (z_i - z_j)^2 \ge (1 - O(\sqrt{\varepsilon}))|E|.
$$

Conclude that you have proved the theorem.

Bonus Problem 4 (Integrality gaps for max-cut, borrowed from Pravesh Kothari). Let C_n be the cycle graph on vertex set [n] with edge set E. Further suppose that n is odd. The size of the max-cut in C_n is $n - 1$. Recall from your solution to Problem 2 of the first problem set that this implies that for any degree 2 pseudoexpectation $\widetilde{\mathbb{E}}$ on $\{\pm 1\}^n$, $\widetilde{\mathbb{E}}\left[\frac{1}{4}\right]$ $\frac{1}{4} \sum_{ij \in E} (x_i - x_j)^2 \leq \left(1 - O\left(\frac{1}{n^2}\right)\right)$ $\frac{1}{n^2}$) n. We will start by seeing that this is tight for degree 2 pseudoexpectations.

Let *L* the Laplacian of C_n defined by $L_{ii} = 2$ for each *i*, and L_{ij} is −1 if *ij* is an edge and 0 otherwise. Observe that for $x \in \{\pm 1\}^n$, the size of the cut associated to x is equal to $\frac{1}{4} \cdot x^{\top} L x$.
For each $0 \le k \le n/2$ let x_1, y_2 be vectors with coordinates $(x_1) = \cos(2\pi i k/n)$ and (x_2)

For each $0 \le k \le n/2$, let x_k , y_k be vectors with coordinates $(x_k)_i = \cos(2\pi i k/n)$ and $(y_k)_i$ $\sin(2\pi i k/n)$.

- 1. Prove that x_k and y_k are eigenvectors of *L* with eigenvalues $2 2\cos(2\pi k/n)$.
- 2. Prove that the diagonal entries of the matrix $M_k = x_k x_k^{\top} + y_k y_k^{\top}$ are 1.
- 3. Prove that there is a degree 2 pseudoexpectation $\widetilde{\mathbb{E}}_k$ on $\{\pm 1\}^n$ with $\widetilde{\mathbb{E}} x = 0$ and $\widetilde{\mathbb{E}} x x^\top = M_k$. Using this, prove that for $k = \frac{n-1}{2}$, $\widetilde{\mathbb{E}}\left[\frac{1}{4}\right]$ $\frac{1}{4} \sum_{ij \in E} (x_i - x_j)^2 \ge \left(1 - O\left(\frac{1}{n^2}\right)\right)$ $\frac{1}{n^2}\bigg)\bigg) n.$

Next, we will see that degree 6 pseudoexpectations do not face such barriers (for the cycle graph).

- 4. Prove that for degree 6 pseudoexpectations \widetilde{E} over $\{\pm 1\}^n$, the squared triangle inequality holds: $\widetilde{\mathbb{E}}(x_i - x_j)^2 \leq \widetilde{\mathbb{E}}(x_i - x_k)^2 + \widetilde{\mathbb{E}}(x_k - x_j)^2$. For a harder exercise, prove this for degree 4 pseudoexpectations.
- 5. Prove that for any degree 6 pseudoexpectation $\widetilde{\mathbb{E}}$, $\widetilde{\mathbb{E}} \left[\frac{1}{4} \right]$ $\frac{1}{4} \sum_{ij \in E} (x_i - x_j)^2 \leq n - 1.$