Problem Set 2

Samuel B. Hopkins

Last updated October 6, 2024

Due: 10/8, 11:59pm.
Please typeset your solutions in LaTeX.

Problem 1 (On &, borrowed from Aaron Potechin). Consider the following polynomial equation in
3 variables, x, y, z.

(x%+ 1)y = 22
Because it implies y = xf—il, any solution (x, y, z) to the above must have y > 0. We will see if
sum-of-squares can capture this reasoning.

1. Construct a degree 4 pseudoexpectation E in variables x, y, z such that E £ (x2 + 1)y = z? but
Ey < 0. (Computer-aided proofs are allowed.)
By Ee(x2+1)y = ZQLWG mean that for any polynomial p of degree at most 1 in x,y, z,
Ep(x,y,z)(x? + 1)y = Ep(x, y,2)z%

2. Despite the above, show that there exists a sum-of-squares refutation to the following system
of polynomial inequalities, for any ¢ > 0: {(x* + 1)y = z%,y < —c}.

Problem 2. Suppose Eis a pseudoexpectation of degree d, with d even, and Eep<0,p=0for
some polynomial p. (Informally, we have been writing E £ p = 0.) Show that if p has even degree,
for every q such that the degree of pq is at most d, we have E pq = 0. Similarly, show that if p has
odd degree, for every g such that the degree of pg is at most d — 1, we have qu =0.

Problem 3. In class, we saw how Gaussian rounding and global correlation could be used to
approximate the max-cut of a graph. In this exercise, we will see how similar ideas can be used for
max-bisection. Let G = (V, E) be a graph with |V| = n even. The goal in the max-bisection problem
is to determine
OPT = max E(S,S),
Scv
|S|=n/2

where E(S, S) is the size of the cut corresponding to S, that is, the number of edges between S and
S. The goal in this exercise will be to prove the following theorem.

Theorem. Let G be a regular graph with max-bisection value at least (1 — €)|E|. There exists an algorithm
running in time n /O gt outputs a bisection cutting (1 — O(\/€))|E| edges.

Let Ebe a pseudodistribution over {+1}" such that

Bl 2 > -y’ = (- 0lEL Y 3 =0
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1. Suppose we apply Gaussian rounding to E to produce a random Vector z € {+1}". Show that
if the global information of E is at most 9, then Var ()] z;) < o) . 2

2. For 6 > 0, explain how to round E of degree poly(1/0) sufficiently large to a distribution z
over {+1}" such that
1
JE ;(zi ~2)’ 2 (1= OWK))IE|
1

and

Var (Z zi) < om®.

3. Using the above, design a (randomized) algorithm running in time n(!/¢
z € {+1}" such that )’ z; = 0 and

" that outputs

i Dz —z)) 2 (1- OVe))E|.
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Conclude that you have proved the theorem.

Bonus Problem 4 (Integrality gaps for max-cut, borrowed from Pravesh Kothari). Let C,, be the
cycle graph on vertex set [1] with edge set E. Further suppose that # is odd. The size of the max-cut
in C,, is n — 1. Recall from your solution to Problem 2 of the first problem set that this implies that
for any degree 2 pseudoexpectation E on {+1}", E B Dijee(xi = xj)?| < (1 -0 (n—g)) n. We will
start by seeing that this is tight for degree 2 pseudoexpectations.

Let L the Laplacian of C, defined by L;; = 2 for each i, and L;; is —1 if ij is an edge and 0
otherwise. Observe that for x € {+1}", the size of the cut associated to x is equal to i -xTLx.

For each 0 < k < n/2, let xi, yx be vectors with coordinates (xx); = cos(2nik/n) and (yx); =
sin(2mik/n).

1. Prove that xx and yj are eigenvectors of L with eigenvalues 2 — 2 cos(2mtk /n).

2. Prove that the diagonal entries of the matrix My = xxx]| + yxy] are 1.

3. Prove that there is a degree 2 pseudoexpectation Ei on {+1}" with Ex = 0 and ExxT = M.
Using this, prove that for k = ”T_l, E H Zi]-eE(xi - xj)Q] > (1 -0 (L)) n.
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Next, we will see that degree 6 pseudoexpectations do not face such barriers (for the cycle
graph).

4. Prove that for degree 6 pseudoexpectations E over {+1}", the squared triangle inequality
holds: E(xZ - x])2 < E(x; — x¢)? + E(xx — x])2 For a harder exercise, prove this for degree 4
pseudoexpectations.

5. Prove that for any degree 6 pseudoexpectation E E [1 ijer(xi — x]-)z] <n-1



