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Problem 1 (Sparse robust mean estimation). In this problem, we will solve a sparse version of
robust mean estimation. Let u € R? be an unknown k-sparse vector, in that only k of its entries
are non-zero. First n = (Nl(kQ(log d)/e?) samples vy, ...,v, € RY are drawn from N(y,1d). Then an
adversary alters en of the samples and reorders them arbitrarily. We observe the resulting dataset
v},...,0;. Our goal will be to give an algorithm for estimating u from these samples.

(a) Letv = 1 ¥ v;. Prove that with 0.99 probability, for all k-sparse vectors u € R? with
llull =1,
(u,7—u)? < &2,

(b) Define X = % e (vi —0)(v; —D)T. Prove that with 0.99 probability, |Z;;| < 1/k fori # j and
|Lii —1| < 1/kforalli,j € [d].

(c) Consider the following system, which we call §, with scalar variables w;,...,w, and
d-dimensional variables z, z1, ..., z,

w?:wi

_ 1w LN, =y e
ZI;ZZi/ZZEZ(Zi_Z)(Zi_Z)T
i=1 i=1
1 1 .,
_ESZ”SE foralli #j
1 1 .
_ESZ“_ISE for all i

Prove that with 0.99 probability, there is a feasible solution to this system where the w; are
indicators of the clean samples and the z; are the actual clean samples.

From now on, assume that the events in (a), (b), (c) hold.



(d) Now we consider the SoS relaxation of the system S. Let u € RY be an arbitrary k-sparse
vector with ||u|| = 1. Prove that

n

Sty Z(u,zi -0y < 10n(1 + (u,z — u)?)

i=1
where recall v; are the clean samples drawn from N (u, I).

(e) Let u € R be an arbitrary k-sparse vector with ||u|| = 1. Use part (c) to prove that

Sty (u,z-9)? <100e(1 + (u,z — u)?)

(f) Use part (e) to deduce that
Sty (u,z—u)? <0(e).

Put everything together to show that there is a polynomial time algorithm that takes the
samples v}, ..., v}, and with probability 0.9, outputs a k-sparse [i such that ||z — fi|| < O(~V/e).

Problem 2. Recall the planted clique problem, with the “null distribution” N' = G(n,1/2), and
the “planted distribution” # obtained by drawing G from G(n,1/2), and adding a uniformly
random k-clique. It is believed that for k significantly smaller than O(+/n) (say O(n'/2-9)), it is
computationally hard to distinguish these two distributions. In this question, we will establish this
computational hardness for the restricted class of algorithms based on low-degree polynomials.

Concretely, set k = O(n'/2-¢) for some (small) constant ¢ > 0, and D < C log n for some (large)
constant C > 0. Recall the degree-D x?-divergence, defined by

Ep[F] - En[F]
Ji, PIN) = max Do SNV
F:{set of graphs on n vertices}—R Var y [F]

F degree < D polynomial
F not identically 0

) ) ) ) : <D ) — )
Further recall that this maximum is attained by the function (%) = , Where % is the likelihood ratio

%(G) = 2 and the notation =P denotes the projection of f to the space of degree D polynomials.

N(G)
This resulting maximum is equal to
<D
N

2

Xp (PIN) =

7

2

with the notation ||f||3 = Ex 2.

(@) Let g = (/%)SD be a polynomial of degree D in the variables (xg)e e(1y where x, = 1if e is
2
an edge in the graph, and —1 otherwise. Express g in terms of its Fourier coefficients as
8 = Xlaj<D SaX®. Determine g,,.

(b) Show that in the given parameter regime of k, D, x2,, (P[IN) = |lg = 1]I* = o(1).



