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Problem 1 (Sparse robust mean estimation). In this problem, we will solve a sparse version of
robust mean estimation. Let � ∈ R3 be an unknown :-sparse vector, in that only : of its entries
are non-zero. First = = Ω̃(:2(log 3)/�2) samples E1 , . . . , E= ∈ R3 are drawn fromN(�, Id). Then an
adversary alters �= of the samples and reorders them arbitrarily. We observe the resulting dataset
E′1 , . . . , E

′
= . Our goal will be to give an algorithm for estimating � from these samples.

(a) Let E = 1
=

∑=
8=1 E8 . Prove that with 0.99 probability, for all :-sparse vectors D ∈ R3 with

‖D‖ = 1,
〈D, E − �〉2 ≤ �2 .

(b) Define Σ = 1
=

∑=
8=1(E8 − E)(E8 − E)) . Prove that with 0.99 probability, |Σ8 9 | ≤ 1/: for 8 ≠ 9 and

|Σ88 − 1| ≤ 1/: for all 8 , 9 ∈ [3].

(c) Consider the following system, which we call S, with scalar variables F1 , . . . , F= and
3-dimensional variables I, I1 , . . . , I=

F2
8 = F8
=∑
8=1

F8 ≥ (1 − �)=

F8(I8 − E′8) = 0

I =
1

=

=∑
8=1

I8 , Σ =
1

=

=∑
8=1

(I8 − I)(I8 − I))

− 1

:
≤ Σ8 9 ≤

1

:
for all 8 ≠ 9

− 1

:
≤ Σ88 − 1 ≤

1

:
for all 8

Prove that with 0.99 probability, there is a feasible solution to this system where the F8 are
indicators of the clean samples and the I8 are the actual clean samples.

From now on, assume that the events in (a), (b), (c) hold.
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(d) Now we consider the SoS relaxation of the system S. Let D ∈ R3 be an arbitrary :-sparse
vector with ‖D‖ = 1. Prove that

S `2
=∑
8=1

〈D, I8 − E8〉2 ≤ 10=(1 + 〈D, I − �〉2)

where recall E8 are the clean samples drawn from #(�, �).

(e) Let D ∈ R3 be an arbitrary :-sparse vector with ‖D‖ = 1. Use part (c) to prove that

S `4 〈D, I − E〉2 ≤ 100�(1 + 〈D, I − �〉2)

(f) Use part (e) to deduce that
S `4 〈D, I − �〉2 ≤ $(�) .

Put everything together to show that there is a polynomial time algorithm that takes the
samples E′1 , . . . , E

′
= and with probability 0.9, outputs a :-sparse �̂ such that ‖� − �̂‖ ≤ $(

√
�).

Problem 2. Recall the planted clique problem, with the “null distribution” N = �(=, 1/2), and
the “planted distribution” P obtained by drawing � from �(=, 1/2), and adding a uniformly
random :-clique. It is believed that for : significantly smaller than $(

√
=) (say $(=1/2−�)), it is

computationally hard to distinguish these two distributions. In this question, we will establish this
computational hardness for the restricted class of algorithms based on low-degree polynomials.

Concretely, set : = $(=1/2−�) for some (small) constant � > 0, and � ≤ � log = for some (large)
constant � > 0. Recall the degree-� "2-divergence, defined by√

"2
≤� (P‖N) = max

�:{set of graphs on = vertices}→R
� degree ≤ � polynomial

� not identically 0

EP[�] − EN [�]√
VarN [�]

.

Further recall that this maximum is attained by the function
( P
N

)≤� , where PN is the likelihood ratio
P
N (�) =

P(�)
N(�) and the notation 5 ≤� denotes the projection of 5 to the space of degree � polynomials.

This resulting maximum is equal to

"2
≤� (P‖N) =

(PN )≤�
− 1

2
2

,

with the notation ‖ 5 ‖22 = EN 5 2.

(a) Let 6 =
( P
N

)≤� be a polynomial of degree � in the variables (G4)4∈([=]2 ), where G4 = 1 if 4 is
an edge in the graph, and −1 otherwise. Express 6 in terms of its Fourier coefficients as
6 =

∑
:| |≤� 6̂G

. Determine 6̂.

(b) Show that in the given parameter regime of :, �, "2
≤� (P‖N) = ‖6 − 1‖2 = >(1).
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